Cargando…
Adaptive Stimulus Design for Dynamic Recurrent Neural Network Models
We present an adaptive stimulus design method for efficiently estimating the parameters of a dynamic recurrent network model with interacting excitatory and inhibitory neuronal populations. Although stimuli that are optimized for model parameter estimation should, in theory, have advantages over non...
Autores principales: | Doruk, R. Ozgur, Zhang, Kechen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349832/ https://www.ncbi.nlm.nih.gov/pubmed/30723397 http://dx.doi.org/10.3389/fncir.2018.00119 |
Ejemplares similares
-
Adaptive stimulus optimization for sensory systems neuroscience
por: DiMattina, Christopher, et al.
Publicado: (2013) -
Dynamic stability of sequential stimulus representations in adapting neuronal networks
por: Duarte, Renato C. F., et al.
Publicado: (2014) -
Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks
por: Güçlü, Umut, et al.
Publicado: (2017) -
Dynamics and Information Import in Recurrent Neural Networks
por: Metzner, Claus, et al.
Publicado: (2022) -
Neural timing of stimulus events with microsecond precision
por: Luo, Jinhong, et al.
Publicado: (2018)