Cargando…

Quantitative analysis of melanin content in a three-dimensional melanoma cell culture

Reliable measurement of the amount of melanin produced by melanocytes is essential to study various skin disorders and to evaluate the efficacy of candidate reagents for such disorders or for whitening purposes. Conventional melanin quantification methods are based on absorption spectroscopy, which...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Soobin, Lim, Gippeum J., Lee, Ji Youn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349835/
https://www.ncbi.nlm.nih.gov/pubmed/30692593
http://dx.doi.org/10.1038/s41598-018-37055-y
Descripción
Sumario:Reliable measurement of the amount of melanin produced by melanocytes is essential to study various skin disorders and to evaluate the efficacy of candidate reagents for such disorders or for whitening purposes. Conventional melanin quantification methods are based on absorption spectroscopy, which measures the melanin from lysed cells grown on two-dimensional (2D) surfaces. The 2D culture environment is intrinsically different from in vivo systems though, and therefore cells often lose their original phenotypes. Melanocytes in particular lose their ability to synthesize melanin, thereby requiring melanogenesis stimulators such as alpha-melanocyte stimulating hormone (α-MSH) to promote melanin synthesis. In this study, we compared melanin synthesis in B16 murine melanoma cells grown in 2D and three-dimensional culture environments. B16 cells instantly formed an aggregate in a hanging-drop culture, and synthesized melanin efficiently without treatment of α-MSH. We were able to measure the melanin secreted from a single melanocyte aggregate, indicating that our method enables non-invasive long-term monitoring of melanin synthesis and secretion in a high-throughput format. We successfully tested the developed platform by quantifying the depigmenting effects of arbutin and kojic acid.