Cargando…

The prodomain of caspase-3 regulates its own removal and caspase activation

Caspase-3 is a cysteine–aspartic acid protease that cleaves cellular targets and executes cell death. Our current understanding is caspase-3 is activated by the cleavage of the interdomain linker and then subsequent cleavage of the N-terminal prodomain. However, previous reports have suggested that...

Descripción completa

Detalles Bibliográficos
Autores principales: Ponder, Katelyn G., Boise, Lawrence H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349851/
https://www.ncbi.nlm.nih.gov/pubmed/30701088
http://dx.doi.org/10.1038/s41420-019-0142-1
Descripción
Sumario:Caspase-3 is a cysteine–aspartic acid protease that cleaves cellular targets and executes cell death. Our current understanding is caspase-3 is activated by the cleavage of the interdomain linker and then subsequent cleavage of the N-terminal prodomain. However, previous reports have suggested that removal of the prodomain can result in the constitutive activation of caspase-3, although other studies have not observed this. To address this question in a more physiological setting, we developed an inducible doxycycline system to express a mutant form of caspase-3 that lacks the prodomain (∆28). We found that the removal of the prodomain renders the cells more susceptible to death signals, but the caspase is not constitutively active. To elucidate the regions of the prodomain that regulate activity, we created deletion constructs that remove 10 and 19 N-terminal amino acids. Surprisingly, removal of the first 10 amino acids renders caspase-3 inactive. Following serum withdrawal, the interdomain linker is cleaved, however, the remaining prodomain is not removed. Therefore, there is a specific amino acid or stretch of amino acids within the first 10 that are important for prodomain removal and caspase-3 function. We created different point mutations within the prodomain and found amino acid D9 is vital for caspase-3 function. We hypothesize that an initial cleavage event at D9 is required to allow cleavage at D28 that causes the complete removal of the prodomain allowing for full caspase activation. Together these findings demonstrate a previously unknown role of the prodomain in caspase activation.