Cargando…
HRGPred: Prediction of herbicide resistant genes with k-mer nucleotide compositional features and support vector machine
Herbicide resistance (HR) is a major concern for the agricultural producers as well as environmentalists. Resistance to commonly used herbicides are conferred due to mutation(s) in the genes encoding herbicide target sites/proteins (GETS). Identification of these genes through wet-lab experiments is...
Autores principales: | Meher, Prabina Kumar, Sahu, Tanmaya Kumar, Raghunandan, K., Gahoi, Shachi, Choudhury, Nalini Kanta, Rao, Atmakuri Ramakrishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349872/ https://www.ncbi.nlm.nih.gov/pubmed/30692561 http://dx.doi.org/10.1038/s41598-018-37309-9 |
Ejemplares similares
-
ir-HSP: Improved Recognition of Heat Shock Proteins, Their Families and Sub-types Based On g-Spaced Di-peptide Features and Support Vector Machine
por: Meher, Prabina K., et al.
Publicado: (2018) -
funbarRF: DNA barcode-based fungal species prediction using multiclass Random Forest supervised learning model
por: Meher, Prabina Kumar, et al.
Publicado: (2019) -
nifPred: Proteome-Wide Identification and Categorization of Nitrogen-Fixation Proteins of Diaztrophs Based on Composition-Transition-Distribution Features Using Support Vector Machine
por: Meher, Prabina K., et al.
Publicado: (2018) -
Prediction of donor splice sites using random forest with a new sequence encoding approach
por: Meher, Prabina Kumar, et al.
Publicado: (2016) -
Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC
por: Meher, Prabina Kumar, et al.
Publicado: (2017)