Cargando…
Effects of dietary leucine and phenylalanine on gastrointestinal development and small intestinal enzyme activities in milk-fed holstein dairy calves
This study was investigated the effects of dietary supplementation of leucine and phenylalanine on the development of the gastrointestinal tract and the intestinal digestive enzyme activity in male Holstein dairy calves. Twenty calves with a body weight of 38 ± 3 kg at 1 day of age were randomly div...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350069/ https://www.ncbi.nlm.nih.gov/pubmed/30563927 http://dx.doi.org/10.1042/BSR20181733 |
_version_ | 1783390378104193024 |
---|---|
author | Cao, Yangchun Liu, Shimin Yang, Xinjian Guo, Long Cai, Chuanjiang Yao, Junhu |
author_facet | Cao, Yangchun Liu, Shimin Yang, Xinjian Guo, Long Cai, Chuanjiang Yao, Junhu |
author_sort | Cao, Yangchun |
collection | PubMed |
description | This study was investigated the effects of dietary supplementation of leucine and phenylalanine on the development of the gastrointestinal tract and the intestinal digestive enzyme activity in male Holstein dairy calves. Twenty calves with a body weight of 38 ± 3 kg at 1 day of age were randomly divided into four groups: a control group, a leucine group (1.435 g·l(−1)), a phenylalanine group (0.725 g·l(−1)), and a mixed amino acid group (1.435 g·l(−1) leucine plus 0.725 g·l(−1) phenylalanine). The supplementation of leucine decreased the short-circuit current (Isc) of the rumen and duodenum (P<0.01); phenylalanine did not show any influence on the Isc of rumen and duodenum (P>0.05), and also counteracted the Isc reduction caused by leucine. Leucine increased the trypsin activity at the 20% relative site of the small intestine (P<0.05). There was no difference in the activity of α-amylase and of lactase in the small intestinal chyme among four treatments (P>0.05). The trypsin activity in the anterior segment of the small intestine was higher than other segments, whereas the α-amylase activity in the posterior segment of the small intestine was higher than other segments. Leucine can reduce Isc of the rumen and duodenum, improve the development of the gastrointestinal tract, and enhance trypsin activity; phenylalanine could inhibit the effect of leucine in promoting intestinal development. |
format | Online Article Text |
id | pubmed-6350069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63500692019-02-11 Effects of dietary leucine and phenylalanine on gastrointestinal development and small intestinal enzyme activities in milk-fed holstein dairy calves Cao, Yangchun Liu, Shimin Yang, Xinjian Guo, Long Cai, Chuanjiang Yao, Junhu Biosci Rep Research Articles This study was investigated the effects of dietary supplementation of leucine and phenylalanine on the development of the gastrointestinal tract and the intestinal digestive enzyme activity in male Holstein dairy calves. Twenty calves with a body weight of 38 ± 3 kg at 1 day of age were randomly divided into four groups: a control group, a leucine group (1.435 g·l(−1)), a phenylalanine group (0.725 g·l(−1)), and a mixed amino acid group (1.435 g·l(−1) leucine plus 0.725 g·l(−1) phenylalanine). The supplementation of leucine decreased the short-circuit current (Isc) of the rumen and duodenum (P<0.01); phenylalanine did not show any influence on the Isc of rumen and duodenum (P>0.05), and also counteracted the Isc reduction caused by leucine. Leucine increased the trypsin activity at the 20% relative site of the small intestine (P<0.05). There was no difference in the activity of α-amylase and of lactase in the small intestinal chyme among four treatments (P>0.05). The trypsin activity in the anterior segment of the small intestine was higher than other segments, whereas the α-amylase activity in the posterior segment of the small intestine was higher than other segments. Leucine can reduce Isc of the rumen and duodenum, improve the development of the gastrointestinal tract, and enhance trypsin activity; phenylalanine could inhibit the effect of leucine in promoting intestinal development. Portland Press Ltd. 2019-01-25 /pmc/articles/PMC6350069/ /pubmed/30563927 http://dx.doi.org/10.1042/BSR20181733 Text en © 2019 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society |
spellingShingle | Research Articles Cao, Yangchun Liu, Shimin Yang, Xinjian Guo, Long Cai, Chuanjiang Yao, Junhu Effects of dietary leucine and phenylalanine on gastrointestinal development and small intestinal enzyme activities in milk-fed holstein dairy calves |
title | Effects of dietary leucine and phenylalanine on gastrointestinal development and small intestinal enzyme activities in milk-fed holstein dairy calves |
title_full | Effects of dietary leucine and phenylalanine on gastrointestinal development and small intestinal enzyme activities in milk-fed holstein dairy calves |
title_fullStr | Effects of dietary leucine and phenylalanine on gastrointestinal development and small intestinal enzyme activities in milk-fed holstein dairy calves |
title_full_unstemmed | Effects of dietary leucine and phenylalanine on gastrointestinal development and small intestinal enzyme activities in milk-fed holstein dairy calves |
title_short | Effects of dietary leucine and phenylalanine on gastrointestinal development and small intestinal enzyme activities in milk-fed holstein dairy calves |
title_sort | effects of dietary leucine and phenylalanine on gastrointestinal development and small intestinal enzyme activities in milk-fed holstein dairy calves |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350069/ https://www.ncbi.nlm.nih.gov/pubmed/30563927 http://dx.doi.org/10.1042/BSR20181733 |
work_keys_str_mv | AT caoyangchun effectsofdietaryleucineandphenylalanineongastrointestinaldevelopmentandsmallintestinalenzymeactivitiesinmilkfedholsteindairycalves AT liushimin effectsofdietaryleucineandphenylalanineongastrointestinaldevelopmentandsmallintestinalenzymeactivitiesinmilkfedholsteindairycalves AT yangxinjian effectsofdietaryleucineandphenylalanineongastrointestinaldevelopmentandsmallintestinalenzymeactivitiesinmilkfedholsteindairycalves AT guolong effectsofdietaryleucineandphenylalanineongastrointestinaldevelopmentandsmallintestinalenzymeactivitiesinmilkfedholsteindairycalves AT caichuanjiang effectsofdietaryleucineandphenylalanineongastrointestinaldevelopmentandsmallintestinalenzymeactivitiesinmilkfedholsteindairycalves AT yaojunhu effectsofdietaryleucineandphenylalanineongastrointestinaldevelopmentandsmallintestinalenzymeactivitiesinmilkfedholsteindairycalves |