Cargando…
Integrating random walk and binary regression to identify novel miRNA-disease association
BACKGROUND: In the last few decades, cumulative experimental researches have witnessed and verified the important roles of microRNAs (miRNAs) in the development of human complex diseases. Benefitting from the rapid growth both in the availability of miRNA-related data and the development of various...
Autores principales: | Niu, Ya-Wei, Wang, Guang-Hui, Yan, Gui-Ying, Chen, Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350368/ https://www.ncbi.nlm.nih.gov/pubmed/30691413 http://dx.doi.org/10.1186/s12859-019-2640-9 |
Ejemplares similares
-
MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA–disease association prediction
por: Chen, Xing, et al.
Publicado: (2017) -
Identifying Small Molecule-miRNA Associations Based on Credible Negative Sample Selection and Random Walk
por: Liu, Fuxing, et al.
Publicado: (2020) -
Integrative Analysis of miRNA-mRNA and miRNA-miRNA Interactions
por: Guo, Li, et al.
Publicado: (2014) -
Integrated miRNA and mRNA expression profiling to identify mRNA targets of dysregulated miRNAs in pulmonary tuberculosis
por: Zhang, Xing, et al.
Publicado: (2018) -
Predicting miRNA–disease associations using improved random walk with restart and integrating multiple similarities
por: Nguyen, Van Tinh, et al.
Publicado: (2021)