Cargando…
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
Breast tumor segmentation plays a crucial role in subsequent disease diagnosis, and most algorithms need interactive prior to firstly locate tumors and perform segmentation based on tumor-centric candidates. In this paper, we propose a fully convolutional network to achieve automatic segmentation of...
Autores principales: | Hai, Jinjin, Qiao, Kai, Chen, Jian, Tan, Hongna, Xu, Jingbo, Zeng, Lei, Shi, Dapeng, Yan, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350548/ https://www.ncbi.nlm.nih.gov/pubmed/30774849 http://dx.doi.org/10.1155/2019/8415485 |
Ejemplares similares
-
Recovery of Ionospheric Signals Using Fully Convolutional DenseNet and Its Challenges
por: Mendoza, Merlin M., et al.
Publicado: (2021) -
Automated segmentation and diagnosis of pneumothorax on chest X-rays with fully convolutional multi-scale ScSE-DenseNet: a retrospective study
por: Wang, Qingfeng, et al.
Publicado: (2020) -
Classification of asymmetry in mammography via the DenseNet convolutional neural network
por: Liao, Tingting, et al.
Publicado: (2023) -
DenseNet-II: an improved deep convolutional neural network for melanoma cancer detection
por: Girdhar, Nancy, et al.
Publicado: (2022) -
DenseNet Convolutional Neural Networks Application for Predicting COVID-19 Using CT Image
por: Hasan, Najmul, et al.
Publicado: (2021)