Cargando…

Catalysis of linear alkene metathesis by Grubbs-type ruthenium alkylidene complexes containing hemilabile α,α-diphenyl-(monosubstituted-pyridin-2-yl)methanolato ligands

Four new Grubbs-type precatalysts [RuCl(H(2)IMes)(O^N)(=CHPh)], where [O^N = α,α-diphenyl-(3-methylpyridin-2-yl)methanolato, α,α-diphenyl-(4-methylpyridin-2-yl)methanolato, α,α-diphenyl-(5-methylpyridin-2-yl)methanolato and α,α-diphenyl-(3-methoxypyridin-2-yl)methanolato] were synthesized and tested...

Descripción completa

Detalles Bibliográficos
Autores principales: Tole, Tegene T, Jordaan, Johan H L, Vosloo, Hermanus C M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350883/
https://www.ncbi.nlm.nih.gov/pubmed/30745994
http://dx.doi.org/10.3762/bjoc.15.19
Descripción
Sumario:Four new Grubbs-type precatalysts [RuCl(H(2)IMes)(O^N)(=CHPh)], where [O^N = α,α-diphenyl-(3-methylpyridin-2-yl)methanolato, α,α-diphenyl-(4-methylpyridin-2-yl)methanolato, α,α-diphenyl-(5-methylpyridin-2-yl)methanolato and α,α-diphenyl-(3-methoxypyridin-2-yl)methanolato] were synthesized and tested for their activity, stability and selectivity in the 1-octene metathesis reaction. Overall the precatalysts showed good activity and high stability for the metathesis of 1-octene at temperatures above 80 °C and up to 110 °C. Selectivities towards the primary metathesis products, i.e., 7-tetradecene and ethene, above 85% were obtained with all the precatalysts at 80 and 90 °C. High selectivities were also observed at 100 °C for the 4-Me- and 3-OMe-substituted precatalysts. With an increase in temperature an increase in isomerisation products and secondary metathesis products were observed with the latter reaching values >20% for the 3-OMe- and 3-Me-substituted precatalysts at 110 and 100 °C, respectively. All the precatalysts exhibits first-order kinetics at 80 °C with the 3-substituted precatalysts the slowest. The behaviour of the 3-substituted precatalysts can be attributed to electronic and steric effects associated with the adjacent bulky phenyl groups.