Cargando…

Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows

Little is known about the bovine milk proteome or whether it can be affected by diet. The objective of this study was to determine if the dietary rumen degradable protein (RDP):rumen undegradable protein (RUP) ra-tio could alter the bovine milk proteome. Six Holstein cows (parity: 2.5 ± 0.8) in mid...

Descripción completa

Detalles Bibliográficos
Autores principales: Tacoma, R., Fields, J., Ebenstein, D. B., Lam, Y.-W., Greenwood, S. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350925/
https://www.ncbi.nlm.nih.gov/pubmed/28711247
http://dx.doi.org/10.3168/jds.2017-12647
_version_ 1783390513820336128
author Tacoma, R.
Fields, J.
Ebenstein, D. B.
Lam, Y.-W.
Greenwood, S. L.
author_facet Tacoma, R.
Fields, J.
Ebenstein, D. B.
Lam, Y.-W.
Greenwood, S. L.
author_sort Tacoma, R.
collection PubMed
description Little is known about the bovine milk proteome or whether it can be affected by diet. The objective of this study was to determine if the dietary rumen degradable protein (RDP):rumen undegradable protein (RUP) ra-tio could alter the bovine milk proteome. Six Holstein cows (parity: 2.5 ± 0.8) in mid lactation were blocked by days in milk (80 ± 43 d in milk) and milk yield (57.5 ± 6.0 kg) and randomly assigned to treatment groups. The experiment was conducted as a double-crossover design consisting of three 21-d periods. Within each period, treatment groups received diets with either (1) a high RDP:RUP ratio (RDP treatment: 62.4:37.6% of crude protein) or (2) a low RDP:RUP ratio (RUP treatment: 51.3:48.7% of crude protein). Both diets were isonitrogenous and isoenergetic (crude protein: 18.5%, net energy for lactation: 1.8 Mcal/kg of dry matter). To confirm N and energy status of cows, dry matter intake was determined daily, rumen fluid samples were collected for volatile fatty acid analysis, blood samples were collected for plasma glucose, β-hydroxybutyrate, urea nitrogen, and fatty acid analysis, and total 24-h urine and fecal samples were collected for N analysis. Milk samples were collected to determine the general milk composition and the protein profile. Milk samples collected for high-abundance protein analysis were subjected to HPLC analysis to determine the content of α-casein, β-casein, and κ-casein, as well as α-lactalbumin and β-lactoglobulin. Samples collected for low-abundance protein analysis were fractionated, enriched using ProteoMiner treatment, and separated using sodium dodecyl sulfate-PAGE. After excision and digestion, the peptides were analyzed using liquid chromatography (LC) tandem mass spectrometry (MS/MS). The LC-MS/MS data were analyzed using PROC GLIMMIX of SAS (version 9.4, SAS Institute Inc., Cary, NC) and adjusted using the MULTTEST procedure. All other parameters were analyzed using PROC MIXED of SAS. No treatment differences were observed in dry matter intake, milk yield, general milk composition, plasma parameters, or rumen volatile fatty acid concentrations, indicating no shift in total energy or protein available. Milk urea N and plasma urea N concentrations were higher in the RDP group, indicating some shift in N partitioning due to diet. A total of 595 milk proteins were identified, with 83% of these proteins known to be involved in cellular processes. Although none of the low-abundance proteins identified by LC-MS/MS were affected by diet, feeding a diet high in RUP decreased β-casein, κ-casein, and total milk casein concentration. Further investigations of the interactions between diet and the milk protein profile are needed to manipulate the milk proteome using diet.
format Online
Article
Text
id pubmed-6350925
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-63509252019-01-29 Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows Tacoma, R. Fields, J. Ebenstein, D. B. Lam, Y.-W. Greenwood, S. L. J Dairy Sci Article Little is known about the bovine milk proteome or whether it can be affected by diet. The objective of this study was to determine if the dietary rumen degradable protein (RDP):rumen undegradable protein (RUP) ra-tio could alter the bovine milk proteome. Six Holstein cows (parity: 2.5 ± 0.8) in mid lactation were blocked by days in milk (80 ± 43 d in milk) and milk yield (57.5 ± 6.0 kg) and randomly assigned to treatment groups. The experiment was conducted as a double-crossover design consisting of three 21-d periods. Within each period, treatment groups received diets with either (1) a high RDP:RUP ratio (RDP treatment: 62.4:37.6% of crude protein) or (2) a low RDP:RUP ratio (RUP treatment: 51.3:48.7% of crude protein). Both diets were isonitrogenous and isoenergetic (crude protein: 18.5%, net energy for lactation: 1.8 Mcal/kg of dry matter). To confirm N and energy status of cows, dry matter intake was determined daily, rumen fluid samples were collected for volatile fatty acid analysis, blood samples were collected for plasma glucose, β-hydroxybutyrate, urea nitrogen, and fatty acid analysis, and total 24-h urine and fecal samples were collected for N analysis. Milk samples were collected to determine the general milk composition and the protein profile. Milk samples collected for high-abundance protein analysis were subjected to HPLC analysis to determine the content of α-casein, β-casein, and κ-casein, as well as α-lactalbumin and β-lactoglobulin. Samples collected for low-abundance protein analysis were fractionated, enriched using ProteoMiner treatment, and separated using sodium dodecyl sulfate-PAGE. After excision and digestion, the peptides were analyzed using liquid chromatography (LC) tandem mass spectrometry (MS/MS). The LC-MS/MS data were analyzed using PROC GLIMMIX of SAS (version 9.4, SAS Institute Inc., Cary, NC) and adjusted using the MULTTEST procedure. All other parameters were analyzed using PROC MIXED of SAS. No treatment differences were observed in dry matter intake, milk yield, general milk composition, plasma parameters, or rumen volatile fatty acid concentrations, indicating no shift in total energy or protein available. Milk urea N and plasma urea N concentrations were higher in the RDP group, indicating some shift in N partitioning due to diet. A total of 595 milk proteins were identified, with 83% of these proteins known to be involved in cellular processes. Although none of the low-abundance proteins identified by LC-MS/MS were affected by diet, feeding a diet high in RUP decreased β-casein, κ-casein, and total milk casein concentration. Further investigations of the interactions between diet and the milk protein profile are needed to manipulate the milk proteome using diet. 2017-07-12 2017-09 /pmc/articles/PMC6350925/ /pubmed/28711247 http://dx.doi.org/10.3168/jds.2017-12647 Text en http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license
spellingShingle Article
Tacoma, R.
Fields, J.
Ebenstein, D. B.
Lam, Y.-W.
Greenwood, S. L.
Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows
title Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows
title_full Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows
title_fullStr Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows
title_full_unstemmed Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows
title_short Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows
title_sort ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation holstein dairy cows
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350925/
https://www.ncbi.nlm.nih.gov/pubmed/28711247
http://dx.doi.org/10.3168/jds.2017-12647
work_keys_str_mv AT tacomar ratioofdietaryrumendegradableproteintorumenundegradableproteinaffectsnitrogenpartitioningbutdoesnotaffectthebovinemilkproteomeproducedbymidlactationholsteindairycows
AT fieldsj ratioofdietaryrumendegradableproteintorumenundegradableproteinaffectsnitrogenpartitioningbutdoesnotaffectthebovinemilkproteomeproducedbymidlactationholsteindairycows
AT ebensteindb ratioofdietaryrumendegradableproteintorumenundegradableproteinaffectsnitrogenpartitioningbutdoesnotaffectthebovinemilkproteomeproducedbymidlactationholsteindairycows
AT lamyw ratioofdietaryrumendegradableproteintorumenundegradableproteinaffectsnitrogenpartitioningbutdoesnotaffectthebovinemilkproteomeproducedbymidlactationholsteindairycows
AT greenwoodsl ratioofdietaryrumendegradableproteintorumenundegradableproteinaffectsnitrogenpartitioningbutdoesnotaffectthebovinemilkproteomeproducedbymidlactationholsteindairycows