Cargando…
Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures
Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. To identify new regulatory genes in apple (Malus domestica) that may be involved in regulating low temperature induced anthocyanin biosynthesis, we performed RNA-seq analysis of leaves...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350969/ https://www.ncbi.nlm.nih.gov/pubmed/30695036 http://dx.doi.org/10.1371/journal.pone.0210672 |
_version_ | 1783390520162123776 |
---|---|
author | Song, Tingting Li, Keting Wu, Ting Wang, Yi Zhang, Xinzhong Xu, Xuefeng Yao, Yuncong Han, Zhenhai |
author_facet | Song, Tingting Li, Keting Wu, Ting Wang, Yi Zhang, Xinzhong Xu, Xuefeng Yao, Yuncong Han, Zhenhai |
author_sort | Song, Tingting |
collection | PubMed |
description | Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. To identify new regulatory genes in apple (Malus domestica) that may be involved in regulating low temperature induced anthocyanin biosynthesis, we performed RNA-seq analysis of leaves from the ‘Gala’ apple cultivar following exposure to a low temperature (16 °C). A visible red color appeared on the upper leaves and the anthocyanin content increased significantly after the low temperature treatment. Genes from the flavonoid biosynthesis pathway were significantly enriched among the differentially expressed genes, and the expression of several transcription factors was shown by WGCNA (weighted gene co-expression network analysis) to correlate with anthocyanin accumulation, including members of the MYB, MADS, WRKY, WD40, Zinc Finger and HB-ZIP families. Three MYB transcription factors (MdMYB12, MdMYB22 and MdMYB114), which had several CBF/DREB response elements in their promoters, were significantly induced by low temperature exposure and their expression also correlated highly with anthocyanin accumulation. We hypothesize that they may act as regulators of anthocyanin biosynthesis and be regulated by CBF/DREB transcription factors in apple leaves under low temperature conditions. The analyses presented here provide insights into the molecular mechanisms underlying anthocyanin accumulation during low temperature exposure. |
format | Online Article Text |
id | pubmed-6350969 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63509692019-02-15 Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures Song, Tingting Li, Keting Wu, Ting Wang, Yi Zhang, Xinzhong Xu, Xuefeng Yao, Yuncong Han, Zhenhai PLoS One Research Article Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. To identify new regulatory genes in apple (Malus domestica) that may be involved in regulating low temperature induced anthocyanin biosynthesis, we performed RNA-seq analysis of leaves from the ‘Gala’ apple cultivar following exposure to a low temperature (16 °C). A visible red color appeared on the upper leaves and the anthocyanin content increased significantly after the low temperature treatment. Genes from the flavonoid biosynthesis pathway were significantly enriched among the differentially expressed genes, and the expression of several transcription factors was shown by WGCNA (weighted gene co-expression network analysis) to correlate with anthocyanin accumulation, including members of the MYB, MADS, WRKY, WD40, Zinc Finger and HB-ZIP families. Three MYB transcription factors (MdMYB12, MdMYB22 and MdMYB114), which had several CBF/DREB response elements in their promoters, were significantly induced by low temperature exposure and their expression also correlated highly with anthocyanin accumulation. We hypothesize that they may act as regulators of anthocyanin biosynthesis and be regulated by CBF/DREB transcription factors in apple leaves under low temperature conditions. The analyses presented here provide insights into the molecular mechanisms underlying anthocyanin accumulation during low temperature exposure. Public Library of Science 2019-01-29 /pmc/articles/PMC6350969/ /pubmed/30695036 http://dx.doi.org/10.1371/journal.pone.0210672 Text en © 2019 Song et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Song, Tingting Li, Keting Wu, Ting Wang, Yi Zhang, Xinzhong Xu, Xuefeng Yao, Yuncong Han, Zhenhai Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures |
title | Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures |
title_full | Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures |
title_fullStr | Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures |
title_full_unstemmed | Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures |
title_short | Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures |
title_sort | identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350969/ https://www.ncbi.nlm.nih.gov/pubmed/30695036 http://dx.doi.org/10.1371/journal.pone.0210672 |
work_keys_str_mv | AT songtingting identificationofnewregulatorsthroughtranscriptomeanalysisthatregulateanthocyaninbiosynthesisinappleleavesatlowtemperatures AT liketing identificationofnewregulatorsthroughtranscriptomeanalysisthatregulateanthocyaninbiosynthesisinappleleavesatlowtemperatures AT wuting identificationofnewregulatorsthroughtranscriptomeanalysisthatregulateanthocyaninbiosynthesisinappleleavesatlowtemperatures AT wangyi identificationofnewregulatorsthroughtranscriptomeanalysisthatregulateanthocyaninbiosynthesisinappleleavesatlowtemperatures AT zhangxinzhong identificationofnewregulatorsthroughtranscriptomeanalysisthatregulateanthocyaninbiosynthesisinappleleavesatlowtemperatures AT xuxuefeng identificationofnewregulatorsthroughtranscriptomeanalysisthatregulateanthocyaninbiosynthesisinappleleavesatlowtemperatures AT yaoyuncong identificationofnewregulatorsthroughtranscriptomeanalysisthatregulateanthocyaninbiosynthesisinappleleavesatlowtemperatures AT hanzhenhai identificationofnewregulatorsthroughtranscriptomeanalysisthatregulateanthocyaninbiosynthesisinappleleavesatlowtemperatures |