Cargando…
Overexpression of Adenoviral E1A Sensitizes E1A+Ras-Transformed Cells to the Action of Histone Deacetylase Inhibitors
The adenoviral E1A protein induces cell proliferation, transformation, and tumor formation in rodents, on the one hand. On the other hand, E1A expression increases cell sensitivity to a number of cytotoxic agents. Therefore, E1A is a candidate for use as a component of combination therapy for malign...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
A.I. Gordeyev
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351034/ https://www.ncbi.nlm.nih.gov/pubmed/30713764 |
Sumario: | The adenoviral E1A protein induces cell proliferation, transformation, and tumor formation in rodents, on the one hand. On the other hand, E1A expression increases cell sensitivity to a number of cytotoxic agents. Therefore, E1A is a candidate for use as a component of combination therapy for malignant tumors. The highest augmentation in the cytotoxic effect was achieved by a combined use of E1A expression and histone deacetylases (HDAC) inhibitors. However, HDAC inhibitors do not induce apoptosis in cells transformed with E1A and cHa-ras oncogenes. In this study, it was shown that HDAC inhibitors reduce the expression of adenoviral E1A. However, under unregulated E1A overexpression, these cells undergo apoptosis in the presence of HDAC inhibitors. Treatment with a HDAC inhibitor, sodium butyrate (NaBut), was shown to activate the anti-apoptotic factor NF-kB in control cells. However, NaBut was unable to modulate the NF-kB activity in E1A overexpressed cells. Therefore, it is fair to postulate that cells transformed with E1A and cHa-ras oncogenes avoid the apoptosis induced by HDAC inhibitors thanks to a NaBut-dependent decrease in E1A expression. |
---|