Cargando…
Fibonacci numbers: A population dynamics perspective
Fibonacci numbers or Fibonacci sequence is among the most popular numbers or sequence in Mathematics. In this paper, we discuss the sequence in a population dynamics perspective. We discuss the early development of the sequence and interpret the sequence as a number of a hypothetical population. The...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351390/ https://www.ncbi.nlm.nih.gov/pubmed/30723821 http://dx.doi.org/10.1016/j.heliyon.2019.e01130 |
_version_ | 1783390562345287680 |
---|---|
author | Supriatna, Asep K. Carnia, Ema Ndii, Meksianis Z. |
author_facet | Supriatna, Asep K. Carnia, Ema Ndii, Meksianis Z. |
author_sort | Supriatna, Asep K. |
collection | PubMed |
description | Fibonacci numbers or Fibonacci sequence is among the most popular numbers or sequence in Mathematics. In this paper, we discuss the sequence in a population dynamics perspective. We discuss the early development of the sequence and interpret the sequence as a number of a hypothetical population. The governing equation that produces the Fibonacci sequence is written in a matrix form having a square matrix A. We show the relation of the eigenvalues, eigenvectors, and eigenspaces to the matrix with the dynamics of the sequence. We also generalize the matrix equation so that it governs a more realistic model of the hypothetical population. Some results regarding the modified golden ratio are presented. |
format | Online Article Text |
id | pubmed-6351390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-63513902019-02-05 Fibonacci numbers: A population dynamics perspective Supriatna, Asep K. Carnia, Ema Ndii, Meksianis Z. Heliyon Article Fibonacci numbers or Fibonacci sequence is among the most popular numbers or sequence in Mathematics. In this paper, we discuss the sequence in a population dynamics perspective. We discuss the early development of the sequence and interpret the sequence as a number of a hypothetical population. The governing equation that produces the Fibonacci sequence is written in a matrix form having a square matrix A. We show the relation of the eigenvalues, eigenvectors, and eigenspaces to the matrix with the dynamics of the sequence. We also generalize the matrix equation so that it governs a more realistic model of the hypothetical population. Some results regarding the modified golden ratio are presented. Elsevier 2019-01-28 /pmc/articles/PMC6351390/ /pubmed/30723821 http://dx.doi.org/10.1016/j.heliyon.2019.e01130 Text en © 2019 Published by Elsevier Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Supriatna, Asep K. Carnia, Ema Ndii, Meksianis Z. Fibonacci numbers: A population dynamics perspective |
title | Fibonacci numbers: A population dynamics perspective |
title_full | Fibonacci numbers: A population dynamics perspective |
title_fullStr | Fibonacci numbers: A population dynamics perspective |
title_full_unstemmed | Fibonacci numbers: A population dynamics perspective |
title_short | Fibonacci numbers: A population dynamics perspective |
title_sort | fibonacci numbers: a population dynamics perspective |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351390/ https://www.ncbi.nlm.nih.gov/pubmed/30723821 http://dx.doi.org/10.1016/j.heliyon.2019.e01130 |
work_keys_str_mv | AT supriatnaasepk fibonaccinumbersapopulationdynamicsperspective AT carniaema fibonaccinumbersapopulationdynamicsperspective AT ndiimeksianisz fibonaccinumbersapopulationdynamicsperspective |