Cargando…

Fibonacci numbers: A population dynamics perspective

Fibonacci numbers or Fibonacci sequence is among the most popular numbers or sequence in Mathematics. In this paper, we discuss the sequence in a population dynamics perspective. We discuss the early development of the sequence and interpret the sequence as a number of a hypothetical population. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Supriatna, Asep K., Carnia, Ema, Ndii, Meksianis Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351390/
https://www.ncbi.nlm.nih.gov/pubmed/30723821
http://dx.doi.org/10.1016/j.heliyon.2019.e01130
_version_ 1783390562345287680
author Supriatna, Asep K.
Carnia, Ema
Ndii, Meksianis Z.
author_facet Supriatna, Asep K.
Carnia, Ema
Ndii, Meksianis Z.
author_sort Supriatna, Asep K.
collection PubMed
description Fibonacci numbers or Fibonacci sequence is among the most popular numbers or sequence in Mathematics. In this paper, we discuss the sequence in a population dynamics perspective. We discuss the early development of the sequence and interpret the sequence as a number of a hypothetical population. The governing equation that produces the Fibonacci sequence is written in a matrix form having a square matrix A. We show the relation of the eigenvalues, eigenvectors, and eigenspaces to the matrix with the dynamics of the sequence. We also generalize the matrix equation so that it governs a more realistic model of the hypothetical population. Some results regarding the modified golden ratio are presented.
format Online
Article
Text
id pubmed-6351390
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-63513902019-02-05 Fibonacci numbers: A population dynamics perspective Supriatna, Asep K. Carnia, Ema Ndii, Meksianis Z. Heliyon Article Fibonacci numbers or Fibonacci sequence is among the most popular numbers or sequence in Mathematics. In this paper, we discuss the sequence in a population dynamics perspective. We discuss the early development of the sequence and interpret the sequence as a number of a hypothetical population. The governing equation that produces the Fibonacci sequence is written in a matrix form having a square matrix A. We show the relation of the eigenvalues, eigenvectors, and eigenspaces to the matrix with the dynamics of the sequence. We also generalize the matrix equation so that it governs a more realistic model of the hypothetical population. Some results regarding the modified golden ratio are presented. Elsevier 2019-01-28 /pmc/articles/PMC6351390/ /pubmed/30723821 http://dx.doi.org/10.1016/j.heliyon.2019.e01130 Text en © 2019 Published by Elsevier Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Supriatna, Asep K.
Carnia, Ema
Ndii, Meksianis Z.
Fibonacci numbers: A population dynamics perspective
title Fibonacci numbers: A population dynamics perspective
title_full Fibonacci numbers: A population dynamics perspective
title_fullStr Fibonacci numbers: A population dynamics perspective
title_full_unstemmed Fibonacci numbers: A population dynamics perspective
title_short Fibonacci numbers: A population dynamics perspective
title_sort fibonacci numbers: a population dynamics perspective
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351390/
https://www.ncbi.nlm.nih.gov/pubmed/30723821
http://dx.doi.org/10.1016/j.heliyon.2019.e01130
work_keys_str_mv AT supriatnaasepk fibonaccinumbersapopulationdynamicsperspective
AT carniaema fibonaccinumbersapopulationdynamicsperspective
AT ndiimeksianisz fibonaccinumbersapopulationdynamicsperspective