Cargando…
Synthetic genomics: a new venture to dissect genome fundamentals and engineer new functions
Since the first synthetic gene was synthesized in 1970s, the efficiency and the capacity of made-to-order DNA sequence synthesis has increased by several orders of magnitude. Advances in DNA synthesis and assembly over the past years has resulted in a steep drop in price for custom made DNA. Similar...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351456/ https://www.ncbi.nlm.nih.gov/pubmed/29751161 http://dx.doi.org/10.1016/j.cbpa.2018.04.002 |
Sumario: | Since the first synthetic gene was synthesized in 1970s, the efficiency and the capacity of made-to-order DNA sequence synthesis has increased by several orders of magnitude. Advances in DNA synthesis and assembly over the past years has resulted in a steep drop in price for custom made DNA. Similar effects were observed in DNA sequencing technologies which underpin DNA-reading projects. Today, synthetic DNA sequences with more than 10 000 bps and turn-around times of a few weeks are commercially available. This enables researchers to perform large-scale projects to write synthetic chromosomes and characterize their functionalities in vivo. Synthetic genomics opens up new paradigms to study the genome fundamentals and engineer novel biological functions. |
---|