Cargando…
Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard
Given the importance of gland morphology in grading prostate cancer (PCa), automatically differentiating between epithelium and other tissues is an important prerequisite for the development of automated methods for detecting PCa. We propose a new deep learning method to segment epithelial tissue in...
Autores principales: | Bulten, Wouter, Bándi, Péter, Hoven, Jeffrey, Loo, Rob van de, Lotz, Johannes, Weiss, Nick, Laak, Jeroen van der, Ginneken, Bram van, Hulsbergen-van de Kaa, Christina, Litjens, Geert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351532/ https://www.ncbi.nlm.nih.gov/pubmed/30696866 http://dx.doi.org/10.1038/s41598-018-37257-4 |
Ejemplares similares
-
Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
por: Bándi, Péter, et al.
Publicado: (2019) -
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
por: Litjens, Geert, et al.
Publicado: (2016) -
Predicting biochemical recurrence of prostate cancer with artificial intelligence
por: Pinckaers, Hans, et al.
Publicado: (2022) -
1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
por: Litjens, Geert, et al.
Publicado: (2018) -
A Decade of GigaScience: The Challenges of Gigapixel Pathology Images
por: Litjens, Geert, et al.
Publicado: (2022)