Cargando…

Genome-guided and mass spectrometry investigation of natural products produced by a potential new actinobacterial strain isolated from a mangrove ecosystem in Futian, Shenzhen, China

Actinobacteria, a group of gram-positive bacteria, can produce plenty of valuable bioactive secondary metabolites, especially antibiotics. Hence, in order to search for new actinobacteria, actinobacterial isolates were obtained from rhizosphere soil collected from the Futian mangrove ecosystem in Sh...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Dini, Gao, Cheng, Sun, Chenghang, Jin, Tao, Fan, Guangyi, Mok, Kai Meng, Lee, Simon Ming-Yuen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351551/
https://www.ncbi.nlm.nih.gov/pubmed/30696899
http://dx.doi.org/10.1038/s41598-018-37475-w
Descripción
Sumario:Actinobacteria, a group of gram-positive bacteria, can produce plenty of valuable bioactive secondary metabolites, especially antibiotics. Hence, in order to search for new actinobacteria, actinobacterial isolates were obtained from rhizosphere soil collected from the Futian mangrove ecosystem in Shenzhen, China. According to 16S rRNA sequences, 14 actinobacterial strains of the genus Streptomyces, Rhodococcus, Microbacterium, Micromonospora, Actinoplanes and Mycobacterium were isolated and identified. Among these, strain Mycobacterium sp.13 was described as a potential new species belonging to the genus Mycobacterium within the class of actinobacteria according to the genomic analysis. The genome-based 16S rRNA sequences had 98.48% sequence similarity with Mycobacterium moriokaense DSM 44221(T). Meanwhile, the genome sequences of Mycobacterium sp.13 showed an average nucleotide identity (ANI) with the Mycobacterium mageritense DSM 44476, Mycobacterium smegmatis MKD8 and Mycobacterium goodii strain X7B of only 74.79%, 76.12% and 76.42%, respectively. Furthermore, genome-mining results showed that Mycobacterium sp.13 contained 105 gene clusters encoding to the secondary metabolite biosynthesis, where many kinds of terpene, bacteriocin, T1pks, Nrps, saccharide, fatty acid, butyrolactone, ectoine and resorcinol were included. Finally, through LC-MS and HR-MS, analyzing the small molecules from ethyl acetate extract of this strain, asukamycin C and apramycin were for the first time found present to be in Mycobacterium moriokaense strain. Our study provides evidence in support of the potential new Mycobacterium sp.13 isolated from the mangrove environment as a possible novel source of natural products.