Cargando…

Caspase-4 disaggregates lipopolysaccharide micelles via LPS-CARD interaction

Lipopolysaccharides (LPS) are a major component of the outer membrane of Gram-negative bacteria and are pathogen-associated molecular patterns recognized by the TLR4/MD2 complex that induces an inflammatory response. Recently, the cytosolic receptors caspase-4/-5/-11 that bind LPS inside the cell an...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Jinsu, Kim, Seong Ho, Hwang, Dohyeon, Lee, Kyung Eun, Kim, Min Jung, Yang, Eun Gyeong, Kim, So Yeon, Chung, Hak Suk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351570/
https://www.ncbi.nlm.nih.gov/pubmed/30696842
http://dx.doi.org/10.1038/s41598-018-36811-4
Descripción
Sumario:Lipopolysaccharides (LPS) are a major component of the outer membrane of Gram-negative bacteria and are pathogen-associated molecular patterns recognized by the TLR4/MD2 complex that induces an inflammatory response. Recently, the cytosolic receptors caspase-4/-5/-11 that bind LPS inside the cell and trigger inflammasome activation or pyroptosis, have been identified. Despite the important roles of caspase-4 in human immune responses, few studies have investigated its biochemical characteristics and interactions with LPS. Since caspase-4 (C258A) purified from an Escherichia coli host forms aggregates, monomeric proteins including full-length caspase-4, caspase-4 (C258A), and the CARD domain of caspase-4 have been purified from the insect cell system. Here, we report the overexpression and purification of monomeric caspase-4 (C258A) and CARD domain from E. coli and demonstrate that purified caspase-4 (C258A) and CARD domain bind large LPS micelles and disaggregate them to small complexes. As the molar ratio of caspase-4 to LPS increases, the size of the caspase-4/LPS complex decreases. Our results present a new function of caspase-4 and set the stage for structural and biochemical studies, and drug discovery targeting LPS/caspase-4 interactions by establishing a facile purification method to obtain large quantities of purified caspase-4 (C258A) and the CARD domain.