Cargando…
Dinoflagellate nucleus contains an extensive endomembrane network, the nuclear net
Dinoflagellates are some of the most common eukaryotic cells in the ocean, but have very unusual nuclei. Many exhibit a form of closed mitosis (dinomitosis) wherein the nuclear envelope (NE) invaginates to form one or more trans-nuclear tunnels. Rather than contact spindles directly, the chromatids...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351617/ https://www.ncbi.nlm.nih.gov/pubmed/30696854 http://dx.doi.org/10.1038/s41598-018-37065-w |
Sumario: | Dinoflagellates are some of the most common eukaryotic cells in the ocean, but have very unusual nuclei. Many exhibit a form of closed mitosis (dinomitosis) wherein the nuclear envelope (NE) invaginates to form one or more trans-nuclear tunnels. Rather than contact spindles directly, the chromatids then bind to membrane-based kinetochores on the NE. To better understand these unique mitotic features, we reconstructed the nuclear architecture of Polykrikos kofoidii in 3D using focused ion beam scanning electron microscopy (FIB-SEM) in conjunction with high-pressure freezing, freeze-substitution, TEM, and confocal microscopy. We found that P. kofoidii possessed six nuclear tunnels, which were continuous with a reticulating network of membranes that has thus far gone unnoticed. These membranous extensions interconnect the six tunnels while ramifying throughout the nucleus to form a “nuclear net.” To our knowledge, the nuclear net is the most elaborate endomembrane structure described within a nucleus. Our findings demonstrate the utility of tomographic approaches for detecting 3D membrane networks and show that nuclear complexity has been underestimated in Polykrikos kofoidii and, potentially, in other dinoflagellates. |
---|