Cargando…
Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder
Changes in the gut microenvironment may influence the pathogenesis of autism spectrum disorders (ASD). Here, we investigated the composition of the gut microbiota and metabolites in children with ASD. Ninety-two children with ASD and 42 age-matched children exhibiting typical development (TD) were e...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351726/ https://www.ncbi.nlm.nih.gov/pubmed/30701194 http://dx.doi.org/10.1128/mSystems.00321-18 |
_version_ | 1783390642952470528 |
---|---|
author | Wang, Mingbang Wan, Jing Rong, Han He, Fusheng Wang, Hui Zhou, Jiaxiu Cai, Chunquan Wang, Yan Xu, Ruihuan Yin, Zhaoqing Zhou, Wenhao |
author_facet | Wang, Mingbang Wan, Jing Rong, Han He, Fusheng Wang, Hui Zhou, Jiaxiu Cai, Chunquan Wang, Yan Xu, Ruihuan Yin, Zhaoqing Zhou, Wenhao |
author_sort | Wang, Mingbang |
collection | PubMed |
description | Changes in the gut microenvironment may influence the pathogenesis of autism spectrum disorders (ASD). Here, we investigated the composition of the gut microbiota and metabolites in children with ASD. Ninety-two children with ASD and 42 age-matched children exhibiting typical development (TD) were enrolled in the two-stage study. In the discovery stage, shotgun metagenomic sequencing and liquid chromatography-mass spectrometry (LC-MS) were performed simultaneously on fecal samples obtained from 43 children in the ASD group and 31 children in the TD group. Systematic bioinformatic analyses were performed to identify gut metabolites associated with altered gut microbiota composition. At the validation stage, differential metabolites were tested using LC-MS with an additional 49 and 11 children in the ASD and TD groups, respectively. Altered glutamate metabolites were found in the ASD group, along with a decline in 2-keto-glutaramic acid and an abundance of microbiota associated with glutamate metabolism. These changes in glutamate metabolism were correlated with lower levels of the highly abundant bacteria Bacteroides vulgatus and higher levels of the potentially harmful Eggerthella lenta and Clostridium botulinum. Lower gut cortisol levels have also been identified in the ASD group and associated with changes in gut microbiota glutamate metabolism. Finally, gut 2-keto-glutaramic acid was validated as a potential biomarker for ASD. The significant changes in the gut microenvironment in children with ASD may provide new insight into the cause of ASD and aid in the search for diagnostic and therapeutic approaches. IMPORTANCE Multiple lines of evidence suggest that the gut microbiota may play an important role in the pathogenesis of ASD, but the specific mechanism is still unclear. Through a comprehensive gut metagenomic and metabolome study of children with ASD, alterations in gut metabolite composition were found in children with ASD, and these alterations were linked to changes in gut microbiota composition. This may give us a deeper understanding of the role of gut microbiota in the pathogenesis of ASD. |
format | Online Article Text |
id | pubmed-6351726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-63517262019-01-30 Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder Wang, Mingbang Wan, Jing Rong, Han He, Fusheng Wang, Hui Zhou, Jiaxiu Cai, Chunquan Wang, Yan Xu, Ruihuan Yin, Zhaoqing Zhou, Wenhao mSystems Research Article Changes in the gut microenvironment may influence the pathogenesis of autism spectrum disorders (ASD). Here, we investigated the composition of the gut microbiota and metabolites in children with ASD. Ninety-two children with ASD and 42 age-matched children exhibiting typical development (TD) were enrolled in the two-stage study. In the discovery stage, shotgun metagenomic sequencing and liquid chromatography-mass spectrometry (LC-MS) were performed simultaneously on fecal samples obtained from 43 children in the ASD group and 31 children in the TD group. Systematic bioinformatic analyses were performed to identify gut metabolites associated with altered gut microbiota composition. At the validation stage, differential metabolites were tested using LC-MS with an additional 49 and 11 children in the ASD and TD groups, respectively. Altered glutamate metabolites were found in the ASD group, along with a decline in 2-keto-glutaramic acid and an abundance of microbiota associated with glutamate metabolism. These changes in glutamate metabolism were correlated with lower levels of the highly abundant bacteria Bacteroides vulgatus and higher levels of the potentially harmful Eggerthella lenta and Clostridium botulinum. Lower gut cortisol levels have also been identified in the ASD group and associated with changes in gut microbiota glutamate metabolism. Finally, gut 2-keto-glutaramic acid was validated as a potential biomarker for ASD. The significant changes in the gut microenvironment in children with ASD may provide new insight into the cause of ASD and aid in the search for diagnostic and therapeutic approaches. IMPORTANCE Multiple lines of evidence suggest that the gut microbiota may play an important role in the pathogenesis of ASD, but the specific mechanism is still unclear. Through a comprehensive gut metagenomic and metabolome study of children with ASD, alterations in gut metabolite composition were found in children with ASD, and these alterations were linked to changes in gut microbiota composition. This may give us a deeper understanding of the role of gut microbiota in the pathogenesis of ASD. American Society for Microbiology 2019-01-29 /pmc/articles/PMC6351726/ /pubmed/30701194 http://dx.doi.org/10.1128/mSystems.00321-18 Text en Copyright © 2019 Wang et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Wang, Mingbang Wan, Jing Rong, Han He, Fusheng Wang, Hui Zhou, Jiaxiu Cai, Chunquan Wang, Yan Xu, Ruihuan Yin, Zhaoqing Zhou, Wenhao Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder |
title | Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder |
title_full | Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder |
title_fullStr | Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder |
title_full_unstemmed | Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder |
title_short | Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder |
title_sort | alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351726/ https://www.ncbi.nlm.nih.gov/pubmed/30701194 http://dx.doi.org/10.1128/mSystems.00321-18 |
work_keys_str_mv | AT wangmingbang alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT wanjing alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT ronghan alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT hefusheng alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT wanghui alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT zhoujiaxiu alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT caichunquan alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT wangyan alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT xuruihuan alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT yinzhaoqing alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder AT zhouwenhao alterationsingutglutamatemetabolismassociatedwithchangesingutmicrobiotacompositioninchildrenwithautismspectrumdisorder |