Cargando…

Evaluation of Wastewater Treatment by Microcosms of Vertical Subsurface Wetlands in Partially Saturated Conditions Planted with Ornamental Plants and Filled with Mineral and Plastic Substrates

The current knowledge about the role terrestrial ornamental plants play in constructed wetlands (CWs) has scarcely been evaluated. Likewise, little attention has been given towards the use of new support or fill media for subsurface flow CWs, which may result in the reduction of costs when implement...

Descripción completa

Detalles Bibliográficos
Autores principales: Sandoval, Luis, Marín-Muñiz, José Luis, Zamora-Castro, Sergio Aurelio, Sandoval-Salas, Fabiola, Alvarado-Lassman, Alejandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351910/
https://www.ncbi.nlm.nih.gov/pubmed/30634405
http://dx.doi.org/10.3390/ijerph16020167
Descripción
Sumario:The current knowledge about the role terrestrial ornamental plants play in constructed wetlands (CWs) has scarcely been evaluated. Likewise, little attention has been given towards the use of new support or fill media for subsurface flow CWs, which may result in the reduction of costs when implemented on a large scale. This study evaluated, during nine months, the effect of three terrestrial ornamental plants and two substrates on the elimination of pollutants in wastewaters by using fill-and-drain vertical subsurface flow CWs (FD-CWs). Sixteen microcosms were used, nine filled with polyethylene terephthalate (PET) and nine with porous river stone (PRS). For each type of substrate, duplicates of microcosms were used, utilizing Anthurium sp., Zantedeschia aethiopica, and Spathiphyllum wallisii as vegetation and two other CWs without vegetation as controls. The environmental conditions, number of flowers, and height of the plants were registered. The results revealed that both substrates in the FD-CWs were efficient in removing pollutants. The average removal of pollutants in systems with vegetation revealed a positive effect on the reduction of the biochemical oxygen demand (55–70%), nitrates (28–44%), phosphates (25–45%), and fecal coliforms (52–65%). Meanwhile, in units without vegetation, the reduction of pollutants was nearly 40–50% less than in those with vegetation. The use of PET as a filling substrate in CWs did not affect the growth and/or the flowering of the species; therefore, its use combined with the species studied in CWs may be replicated in villages with similar wastewater problems. This may represent a reduction in implementation costs when utilizing PET recycled wastes and PRS as substrates in these systems in comparison with the typical substrates used in CWs. More studies are needed to better understand the interactions among these novel support media and the commercial terrestrial ornamental plants.