Cargando…
Practical Model Selection for Prospective Virtual Screening
[Image: see text] Virtual (computational) high-throughput screening provides a strategy for prioritizing compounds for experimental screens, but the choice of virtual screening algorithm depends on the data set and evaluation strategy. We consider a wide range of ligand-based machine learning and do...
Autores principales: | Liu, Shengchao, Alnammi, Moayad, Ericksen, Spencer S., Voter, Andrew F., Ananiev, Gene E., Keck, James L., Hoffmann, F. Michael, Wildman, Scott A., Gitter, Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351977/ https://www.ncbi.nlm.nih.gov/pubmed/30500183 http://dx.doi.org/10.1021/acs.jcim.8b00363 |
Ejemplares similares
-
Evaluating Scalable
Supervised Learning for Synthesize-on-Demand
Chemical Libraries
por: Alnammi, Moayad, et al.
Publicado: (2023) -
Predicting kinase inhibitors using bioactivity matrix derived informer sets
por: Zhang, Huikun, et al.
Publicado: (2019) -
High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells
por: Hunt, Jack F. V., et al.
Publicado: (2021) -
A guanine-flipping and sequestration mechanism for G-quadruplex unwinding by RecQ helicases
por: Voter, Andrew F., et al.
Publicado: (2018) -
Automating parameter selection to avoid implausible biological pathway models
por: Magnano, Chris S., et al.
Publicado: (2021)