Cargando…
Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy
OBJECTIVE(S): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mashhad University of Medical Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352055/ https://www.ncbi.nlm.nih.gov/pubmed/30705909 http://dx.doi.org/10.22038/AOJNMB.2018.12014 |
_version_ | 1783390731193286656 |
---|---|
author | Teramoto, Atsushi Tsujimoto, Masakazu Inoue, Takahiro Tsukamoto, Tetsuya Imaizumi, Kazuyoshi Toyama, Hiroshi Saito, Kuniaki Fujita, Hiroshi |
author_facet | Teramoto, Atsushi Tsujimoto, Masakazu Inoue, Takahiro Tsukamoto, Tetsuya Imaizumi, Kazuyoshi Toyama, Hiroshi Saito, Kuniaki Fujita, Hiroshi |
author_sort | Teramoto, Atsushi |
collection | PubMed |
description | OBJECTIVE(S): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classification of pulmonary nodules using early and delayed phase PET/CT and conventional CT images. METHODS: We analysed 36 early and delayed phase PET/CT images in patients who underwent both PET/CT scan and lung biopsy, following bronchoscopy. In addition, conventional CT images at maximal inspiration were analysed. The images consisted of 18 malignant and 18 benign nodules. For the classification scheme, 25 types of shape and functional features were first calculated from the images. The random forest algorithm, which is a machine learning technique, was used for classification. RESULTS: The evaluation of the characteristic features and classification accuracy was accomplished using collected images. There was a significant difference between the characteristic features of benign and malignant nodules with regard to standardised uptake value and texture. In terms of classification performance, 94.4% of the malignant nodules were identified correctly assuming that 72.2% of the benign nodules were diagnosed accurately. The accuracy rate of benign nodule detection by means of CT plus two-phase PET images was 44.4% and 11.1% higher than those obtained by CT images alone and CT plus early phase PET images, respectively. CONCLUSION: Based on the findings, the proposed method may be useful to improve the accuracy of malignancy analysis. |
format | Online Article Text |
id | pubmed-6352055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Mashhad University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-63520552019-01-31 Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy Teramoto, Atsushi Tsujimoto, Masakazu Inoue, Takahiro Tsukamoto, Tetsuya Imaizumi, Kazuyoshi Toyama, Hiroshi Saito, Kuniaki Fujita, Hiroshi Asia Ocean J Nucl Med Biol Original Article OBJECTIVE(S): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classification of pulmonary nodules using early and delayed phase PET/CT and conventional CT images. METHODS: We analysed 36 early and delayed phase PET/CT images in patients who underwent both PET/CT scan and lung biopsy, following bronchoscopy. In addition, conventional CT images at maximal inspiration were analysed. The images consisted of 18 malignant and 18 benign nodules. For the classification scheme, 25 types of shape and functional features were first calculated from the images. The random forest algorithm, which is a machine learning technique, was used for classification. RESULTS: The evaluation of the characteristic features and classification accuracy was accomplished using collected images. There was a significant difference between the characteristic features of benign and malignant nodules with regard to standardised uptake value and texture. In terms of classification performance, 94.4% of the malignant nodules were identified correctly assuming that 72.2% of the benign nodules were diagnosed accurately. The accuracy rate of benign nodule detection by means of CT plus two-phase PET images was 44.4% and 11.1% higher than those obtained by CT images alone and CT plus early phase PET images, respectively. CONCLUSION: Based on the findings, the proposed method may be useful to improve the accuracy of malignancy analysis. Mashhad University of Medical Sciences 2019 /pmc/articles/PMC6352055/ /pubmed/30705909 http://dx.doi.org/10.22038/AOJNMB.2018.12014 Text en © 2019 mums.ac.ir This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Teramoto, Atsushi Tsujimoto, Masakazu Inoue, Takahiro Tsukamoto, Tetsuya Imaizumi, Kazuyoshi Toyama, Hiroshi Saito, Kuniaki Fujita, Hiroshi Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy |
title | Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy |
title_full | Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy |
title_fullStr | Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy |
title_full_unstemmed | Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy |
title_short | Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy |
title_sort | automated classification of pulmonary nodules through a retrospective analysis of conventional ct and two-phase pet images in patients undergoing biopsy |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352055/ https://www.ncbi.nlm.nih.gov/pubmed/30705909 http://dx.doi.org/10.22038/AOJNMB.2018.12014 |
work_keys_str_mv | AT teramotoatsushi automatedclassificationofpulmonarynodulesthrougharetrospectiveanalysisofconventionalctandtwophasepetimagesinpatientsundergoingbiopsy AT tsujimotomasakazu automatedclassificationofpulmonarynodulesthrougharetrospectiveanalysisofconventionalctandtwophasepetimagesinpatientsundergoingbiopsy AT inouetakahiro automatedclassificationofpulmonarynodulesthrougharetrospectiveanalysisofconventionalctandtwophasepetimagesinpatientsundergoingbiopsy AT tsukamototetsuya automatedclassificationofpulmonarynodulesthrougharetrospectiveanalysisofconventionalctandtwophasepetimagesinpatientsundergoingbiopsy AT imaizumikazuyoshi automatedclassificationofpulmonarynodulesthrougharetrospectiveanalysisofconventionalctandtwophasepetimagesinpatientsundergoingbiopsy AT toyamahiroshi automatedclassificationofpulmonarynodulesthrougharetrospectiveanalysisofconventionalctandtwophasepetimagesinpatientsundergoingbiopsy AT saitokuniaki automatedclassificationofpulmonarynodulesthrougharetrospectiveanalysisofconventionalctandtwophasepetimagesinpatientsundergoingbiopsy AT fujitahiroshi automatedclassificationofpulmonarynodulesthrougharetrospectiveanalysisofconventionalctandtwophasepetimagesinpatientsundergoingbiopsy |