Cargando…

Effects of hydrogen on polarization of macrophages and microglia in a stroke model

It has been confirmed that inflammation plays an important role in the pathogenesis of ischemic stroke. The polarization of microglia as an important participant in the inflammation following stroke is also found to be involved in stroke. This study aimed to investigate the effects of hydrogen gas o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ning, Ke, Liu, Wen-Wu, Huang, Jun-Long, Lu, Hong-Tao, Sun, Xue-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352575/
https://www.ncbi.nlm.nih.gov/pubmed/30713668
http://dx.doi.org/10.4103/2045-9912.248266
Descripción
Sumario:It has been confirmed that inflammation plays an important role in the pathogenesis of ischemic stroke. The polarization of microglia as an important participant in the inflammation following stroke is also found to be involved in stroke. This study aimed to investigate the effects of hydrogen gas on the polarization of macrophages/microglia in vitro. Raw264.7 cells were treated with lipopolysaccharides and then exposed to hydrogen. The microglia were treated with the supernatant from oxygen and glucose deprivation-treated neurons and then exposed to hydrogen. The phenotypes of Raw 264.7 cells and microglia were determined by flow cytometry, and cell morphology was observed. Results showed lipopolysaccharides significantly increased the M1 macrophages, and the supernatant from oxygen and glucose deprivation-treated neurons dramatically elevated the proportion of M1 microglia, but both treatments had little influence on the M2 cells. In addition, hydrogen treatment significantly inhibited the increase in M1 cells, but had no influence on M2 ones. Our findings suggest that the neuroprotection of hydrogen may be related to its regulation of microglia in the nervous system after stroke.