Cargando…
The Antioxidant Activity of Quercetin in Water Solution
Despite its importance, little is known about the absolute performance and the mechanism for quercetin’s antioxidant activity in water solution. We have investigated this aspect by combining differential oxygen-uptake kinetic measurements and B3LYP/6311+g (d,p) calculations. At pH = 2.1 (30 °C), que...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352608/ https://www.ncbi.nlm.nih.gov/pubmed/31105172 http://dx.doi.org/10.3390/biomimetics2030009 |
_version_ | 1783390876304670720 |
---|---|
author | Amorati, Riccardo Baschieri, Andrea Cowden, Adam Valgimigli, Luca |
author_facet | Amorati, Riccardo Baschieri, Andrea Cowden, Adam Valgimigli, Luca |
author_sort | Amorati, Riccardo |
collection | PubMed |
description | Despite its importance, little is known about the absolute performance and the mechanism for quercetin’s antioxidant activity in water solution. We have investigated this aspect by combining differential oxygen-uptake kinetic measurements and B3LYP/6311+g (d,p) calculations. At pH = 2.1 (30 °C), quercetin had modest activity (k(inh) = 4.0 × 10(3) M(−1) s(−1)), superimposable to catechol. On raising the pH to 7.4, reactivity was boosted 40-fold, trapping two peroxyl radicals in the chromen-4-one core and two in the catechol with k(inh) of 1.6 × 10(5) and 7.0 × 10(4) M(−1) s(−1). Reaction occurs from the equilibrating mono-anions in positions 4′ and 7 and involves firstly the OH in position 3, having bond dissociation enthalpies of 75.0 and 78.7 kcal/mol, respectively, for the two anions. Reaction proceeds by a combination of proton-coupled electron-transfer mechanisms: electron–proton transfer (EPT) and sequential proton loss electron transfer (SPLET). Our results help rationalize quercetin’s reactivity with peroxyl radicals and its importance under biomimetic settings, to act as a nutritional antioxidant. |
format | Online Article Text |
id | pubmed-6352608 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63526082019-05-16 The Antioxidant Activity of Quercetin in Water Solution Amorati, Riccardo Baschieri, Andrea Cowden, Adam Valgimigli, Luca Biomimetics (Basel) Article Despite its importance, little is known about the absolute performance and the mechanism for quercetin’s antioxidant activity in water solution. We have investigated this aspect by combining differential oxygen-uptake kinetic measurements and B3LYP/6311+g (d,p) calculations. At pH = 2.1 (30 °C), quercetin had modest activity (k(inh) = 4.0 × 10(3) M(−1) s(−1)), superimposable to catechol. On raising the pH to 7.4, reactivity was boosted 40-fold, trapping two peroxyl radicals in the chromen-4-one core and two in the catechol with k(inh) of 1.6 × 10(5) and 7.0 × 10(4) M(−1) s(−1). Reaction occurs from the equilibrating mono-anions in positions 4′ and 7 and involves firstly the OH in position 3, having bond dissociation enthalpies of 75.0 and 78.7 kcal/mol, respectively, for the two anions. Reaction proceeds by a combination of proton-coupled electron-transfer mechanisms: electron–proton transfer (EPT) and sequential proton loss electron transfer (SPLET). Our results help rationalize quercetin’s reactivity with peroxyl radicals and its importance under biomimetic settings, to act as a nutritional antioxidant. MDPI 2017-06-27 /pmc/articles/PMC6352608/ /pubmed/31105172 http://dx.doi.org/10.3390/biomimetics2030009 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Amorati, Riccardo Baschieri, Andrea Cowden, Adam Valgimigli, Luca The Antioxidant Activity of Quercetin in Water Solution |
title | The Antioxidant Activity of Quercetin in Water Solution |
title_full | The Antioxidant Activity of Quercetin in Water Solution |
title_fullStr | The Antioxidant Activity of Quercetin in Water Solution |
title_full_unstemmed | The Antioxidant Activity of Quercetin in Water Solution |
title_short | The Antioxidant Activity of Quercetin in Water Solution |
title_sort | antioxidant activity of quercetin in water solution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352608/ https://www.ncbi.nlm.nih.gov/pubmed/31105172 http://dx.doi.org/10.3390/biomimetics2030009 |
work_keys_str_mv | AT amoratiriccardo theantioxidantactivityofquercetininwatersolution AT baschieriandrea theantioxidantactivityofquercetininwatersolution AT cowdenadam theantioxidantactivityofquercetininwatersolution AT valgimigliluca theantioxidantactivityofquercetininwatersolution AT amoratiriccardo antioxidantactivityofquercetininwatersolution AT baschieriandrea antioxidantactivityofquercetininwatersolution AT cowdenadam antioxidantactivityofquercetininwatersolution AT valgimigliluca antioxidantactivityofquercetininwatersolution |