Cargando…

D-Excess-LaA Production Directly from Biomass by Trivalent Yttrium Species

D-lactic acid (D-LaA) synthesis directly from actual biomass via chemocatalytic conversion has shown high potential for satisfying its enormous demand in widespread applications. Here we report yttrium (Y(III))-species-catalyzed conversion of xylose and raw lignocelluloses to LaA with the highest yi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Shuguang, Li, Jing, Li, Jianmei, Wu, Yi, Xiao, Yuan, Hu, Changwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352709/
https://www.ncbi.nlm.nih.gov/pubmed/30682625
http://dx.doi.org/10.1016/j.isci.2019.01.008
Descripción
Sumario:D-lactic acid (D-LaA) synthesis directly from actual biomass via chemocatalytic conversion has shown high potential for satisfying its enormous demand in widespread applications. Here we report yttrium (Y(III))-species-catalyzed conversion of xylose and raw lignocelluloses to LaA with the highest yield of 87.3% (20% ee to D-LaA, ee%=(moles of D-LaA - moles of L-LaA)/(moles of D-LaA + moles of L-LaA) × 100). Combining experiments with theoretical modeling, we reveal that [Y(OH)(2)(H(2)O)(2)](+) is the possible catalytically active species, enabling the unconventional cleavage of C3-C4 in xylulose and the subsequent dehydration of glyceraldehyde to pyruvaldehyde (PRA). The distinct interactions between hydrated-PRA and [Y(OH)(2)(H(2)O)(2)](+) species contribute to the formation of different enantiomers, wherein H-migration via re-face attack leads to L-LaA and that via si-face attack yields D-LaA. The lower strain energy barrier is the origin of excess D-enantiomer formation.