Cargando…

The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay

Despite extensive investigations over the past decade, the chemical basis of the extraordinary underwater adhesion properties of polydopamine (PDA) has remained not entirely understood. The bulk of evidence points to PDA wet adhesion as a complex process based on film deposition, and growth in which...

Descripción completa

Detalles Bibliográficos
Autores principales: Alfieri, Maria Laura, Panzella, Lucia, Oscurato, Stefano Luigi, Salvatore, Marcella, Avolio, Roberto, Errico, Maria Emanuela, Maddalena, Pasqualino, Napolitano, Alessandra, d’Ischia, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352855/
https://www.ncbi.nlm.nih.gov/pubmed/31105248
http://dx.doi.org/10.3390/biomimetics3030026
_version_ 1783390928063430656
author Alfieri, Maria Laura
Panzella, Lucia
Oscurato, Stefano Luigi
Salvatore, Marcella
Avolio, Roberto
Errico, Maria Emanuela
Maddalena, Pasqualino
Napolitano, Alessandra
d’Ischia, Marco
author_facet Alfieri, Maria Laura
Panzella, Lucia
Oscurato, Stefano Luigi
Salvatore, Marcella
Avolio, Roberto
Errico, Maria Emanuela
Maddalena, Pasqualino
Napolitano, Alessandra
d’Ischia, Marco
author_sort Alfieri, Maria Laura
collection PubMed
description Despite extensive investigations over the past decade, the chemical basis of the extraordinary underwater adhesion properties of polydopamine (PDA) has remained not entirely understood. The bulk of evidence points to PDA wet adhesion as a complex process based on film deposition, and growth in which primary amine groups, besides catechol moieties, play a central role. However, the detailed interplay of chemical interactions underlying the dynamics of film formation has not yet been elucidated. Herein, we report the results of a series of experiments showing that coating formation from dopamine at pH 9.0 in carbonate buffer: (a) Requires high dopamine concentrations (>1 mM); (b) is due to species produced in the early stages of dopamine autoxidation; (c) is accelerated by equimolar amounts of periodate causing fast conversion to the o-quinone; and (d) is enhanced by the addition of hexamethylenediamine (HMDA) and other long chain aliphatic amines even at low dopamine concentrations (<1 mM). It is proposed that concentration-dependent PDA film formation reflects the competition between intermolecular amine-quinone condensation processes, leading to adhesive cross-linked oligomer structures, and the intramolecular cyclization route forming little adhesive 5,6-dihydroxyindole (DHI) units. Film growth would then be sustained by dopamine and other soluble species that can be adsorbed on the surface.
format Online
Article
Text
id pubmed-6352855
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63528552019-05-16 The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay Alfieri, Maria Laura Panzella, Lucia Oscurato, Stefano Luigi Salvatore, Marcella Avolio, Roberto Errico, Maria Emanuela Maddalena, Pasqualino Napolitano, Alessandra d’Ischia, Marco Biomimetics (Basel) Article Despite extensive investigations over the past decade, the chemical basis of the extraordinary underwater adhesion properties of polydopamine (PDA) has remained not entirely understood. The bulk of evidence points to PDA wet adhesion as a complex process based on film deposition, and growth in which primary amine groups, besides catechol moieties, play a central role. However, the detailed interplay of chemical interactions underlying the dynamics of film formation has not yet been elucidated. Herein, we report the results of a series of experiments showing that coating formation from dopamine at pH 9.0 in carbonate buffer: (a) Requires high dopamine concentrations (>1 mM); (b) is due to species produced in the early stages of dopamine autoxidation; (c) is accelerated by equimolar amounts of periodate causing fast conversion to the o-quinone; and (d) is enhanced by the addition of hexamethylenediamine (HMDA) and other long chain aliphatic amines even at low dopamine concentrations (<1 mM). It is proposed that concentration-dependent PDA film formation reflects the competition between intermolecular amine-quinone condensation processes, leading to adhesive cross-linked oligomer structures, and the intramolecular cyclization route forming little adhesive 5,6-dihydroxyindole (DHI) units. Film growth would then be sustained by dopamine and other soluble species that can be adsorbed on the surface. MDPI 2018-09-13 /pmc/articles/PMC6352855/ /pubmed/31105248 http://dx.doi.org/10.3390/biomimetics3030026 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alfieri, Maria Laura
Panzella, Lucia
Oscurato, Stefano Luigi
Salvatore, Marcella
Avolio, Roberto
Errico, Maria Emanuela
Maddalena, Pasqualino
Napolitano, Alessandra
d’Ischia, Marco
The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay
title The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay
title_full The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay
title_fullStr The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay
title_full_unstemmed The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay
title_short The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay
title_sort chemistry of polydopamine film formation: the amine-quinone interplay
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352855/
https://www.ncbi.nlm.nih.gov/pubmed/31105248
http://dx.doi.org/10.3390/biomimetics3030026
work_keys_str_mv AT alfierimarialaura thechemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT panzellalucia thechemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT oscuratostefanoluigi thechemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT salvatoremarcella thechemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT avolioroberto thechemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT erricomariaemanuela thechemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT maddalenapasqualino thechemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT napolitanoalessandra thechemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT dischiamarco thechemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT alfierimarialaura chemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT panzellalucia chemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT oscuratostefanoluigi chemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT salvatoremarcella chemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT avolioroberto chemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT erricomariaemanuela chemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT maddalenapasqualino chemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT napolitanoalessandra chemistryofpolydopaminefilmformationtheaminequinoneinterplay
AT dischiamarco chemistryofpolydopaminefilmformationtheaminequinoneinterplay