Cargando…
Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection
The resilience of regeneration in vertebrates is not very well understood. Yet understanding if tissues can regenerate after repeated insults, and identifying limitations, is important for elucidating the underlying mechanisms of tissue plasticity. This is particularly challenging in tissues, such a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353069/ https://www.ncbi.nlm.nih.gov/pubmed/30699109 http://dx.doi.org/10.1371/journal.pone.0204193 |
_version_ | 1783390954091184128 |
---|---|
author | Hanslik, Kendra L. Allen, Scott R. Harkenrider, Tessa L. Fogerson, Stephanie M. Guadarrama, Eduardo Morgan, Jennifer R. |
author_facet | Hanslik, Kendra L. Allen, Scott R. Harkenrider, Tessa L. Fogerson, Stephanie M. Guadarrama, Eduardo Morgan, Jennifer R. |
author_sort | Hanslik, Kendra L. |
collection | PubMed |
description | The resilience of regeneration in vertebrates is not very well understood. Yet understanding if tissues can regenerate after repeated insults, and identifying limitations, is important for elucidating the underlying mechanisms of tissue plasticity. This is particularly challenging in tissues, such as the nervous system, which possess a large number of terminally differentiated cells and often exhibit limited regeneration in the first place. However, unlike mammals, which exhibit very limited regeneration of spinal cord tissues, many non-mammalian vertebrates, including lampreys, bony fishes, amphibians, and reptiles, regenerate their spinal cords and functionally recover even after a complete spinal cord transection. It is well established that lampreys undergo full functional recovery of swimming behaviors after a single spinal cord transection, which is accompanied by tissue repair at the lesion site, as well as axon and synapse regeneration. Here we begin to explore the resilience of spinal cord regeneration in lampreys after a second spinal transection (re-transection). We report that by all functional and anatomical measures tested, lampreys regenerate after spinal re-transection just as robustly as after single transections. Recovery of swimming, synapse and cytoskeletal distributions, axon regeneration, and neuronal survival were nearly identical after spinal transection or re-transection. Only minor differences in tissue repair at the lesion site were observed in re-transected spinal cords. Thus, regenerative potential in the lamprey spinal cord is largely unaffected by spinal re-transection, indicating a greater persistent regenerative potential than exists in some other highly regenerative models. These findings establish a new path for uncovering pro-regenerative targets that could be deployed in non-regenerative conditions. |
format | Online Article Text |
id | pubmed-6353069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63530692019-02-15 Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection Hanslik, Kendra L. Allen, Scott R. Harkenrider, Tessa L. Fogerson, Stephanie M. Guadarrama, Eduardo Morgan, Jennifer R. PLoS One Research Article The resilience of regeneration in vertebrates is not very well understood. Yet understanding if tissues can regenerate after repeated insults, and identifying limitations, is important for elucidating the underlying mechanisms of tissue plasticity. This is particularly challenging in tissues, such as the nervous system, which possess a large number of terminally differentiated cells and often exhibit limited regeneration in the first place. However, unlike mammals, which exhibit very limited regeneration of spinal cord tissues, many non-mammalian vertebrates, including lampreys, bony fishes, amphibians, and reptiles, regenerate their spinal cords and functionally recover even after a complete spinal cord transection. It is well established that lampreys undergo full functional recovery of swimming behaviors after a single spinal cord transection, which is accompanied by tissue repair at the lesion site, as well as axon and synapse regeneration. Here we begin to explore the resilience of spinal cord regeneration in lampreys after a second spinal transection (re-transection). We report that by all functional and anatomical measures tested, lampreys regenerate after spinal re-transection just as robustly as after single transections. Recovery of swimming, synapse and cytoskeletal distributions, axon regeneration, and neuronal survival were nearly identical after spinal transection or re-transection. Only minor differences in tissue repair at the lesion site were observed in re-transected spinal cords. Thus, regenerative potential in the lamprey spinal cord is largely unaffected by spinal re-transection, indicating a greater persistent regenerative potential than exists in some other highly regenerative models. These findings establish a new path for uncovering pro-regenerative targets that could be deployed in non-regenerative conditions. Public Library of Science 2019-01-30 /pmc/articles/PMC6353069/ /pubmed/30699109 http://dx.doi.org/10.1371/journal.pone.0204193 Text en © 2019 Hanslik et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hanslik, Kendra L. Allen, Scott R. Harkenrider, Tessa L. Fogerson, Stephanie M. Guadarrama, Eduardo Morgan, Jennifer R. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection |
title | Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection |
title_full | Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection |
title_fullStr | Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection |
title_full_unstemmed | Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection |
title_short | Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection |
title_sort | regenerative capacity in the lamprey spinal cord is not altered after a repeated transection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353069/ https://www.ncbi.nlm.nih.gov/pubmed/30699109 http://dx.doi.org/10.1371/journal.pone.0204193 |
work_keys_str_mv | AT hanslikkendral regenerativecapacityinthelampreyspinalcordisnotalteredafterarepeatedtransection AT allenscottr regenerativecapacityinthelampreyspinalcordisnotalteredafterarepeatedtransection AT harkenridertessal regenerativecapacityinthelampreyspinalcordisnotalteredafterarepeatedtransection AT fogersonstephaniem regenerativecapacityinthelampreyspinalcordisnotalteredafterarepeatedtransection AT guadarramaeduardo regenerativecapacityinthelampreyspinalcordisnotalteredafterarepeatedtransection AT morganjenniferr regenerativecapacityinthelampreyspinalcordisnotalteredafterarepeatedtransection |