Cargando…
An ecologically constrained procedure for sensitivity analysis of Artificial Neural Networks and other empirical models
Sensitivity analysis applied to Artificial Neural Networks (ANNs) as well as to other types of empirical ecological models allows assessing the importance of environmental predictive variables in affecting species distribution or other target variables. However, approaches that only consider values...
Autores principales: | Franceschini, Simone, Tancioni, Lorenzo, Lorenzoni, Massimo, Mattei, Francesco, Scardi, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353184/ https://www.ncbi.nlm.nih.gov/pubmed/30699204 http://dx.doi.org/10.1371/journal.pone.0211445 |
Ejemplares similares
-
Cascaded neural networks improving fish species prediction accuracy: the role of the biotic information
por: Franceschini, Simone, et al.
Publicado: (2018) -
Dataset exploited for the development and validation of automated cyanobacteria quantification algorithm, ACQUA
por: Gandola, Emanuele, et al.
Publicado: (2016) -
Constrained Mortality Extrapolation to Old Age: An Empirical Assessment
por: Ediev, Dalkhat M.
Publicado: (2017) -
A Flattest Constrained Envelope Approach for Empirical Mode Decomposition
por: Zhu, Weifang, et al.
Publicado: (2013) -
Effects of Preparation Procedures and Porosity on Thermoelectric Bulk Samples of Cu(2)SnS(3) (CTS)
por: Lohani, Ketan, et al.
Publicado: (2022)