Cargando…

Weak magnetic fields alter stem cell–mediated growth

Biological systems are constantly exposed to electromagnetic fields (EMFs) in the form of natural geomagnetic fields and EMFs emitted from technology. While strong magnetic fields are known to change chemical reaction rates and free radical concentrations, the debate remains about whether static wea...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Huizen, Alanna V., Morton, Jacob M., Kinsey, Luke J., Von Kannon, Donald G., Saad, Marwa A., Birkholz, Taylor R., Czajka, Jordan M., Cyrus, Julian, Barnes, Frank S., Beane, Wendy S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353618/
https://www.ncbi.nlm.nih.gov/pubmed/30729158
http://dx.doi.org/10.1126/sciadv.aau7201
_version_ 1783391000861868032
author Van Huizen, Alanna V.
Morton, Jacob M.
Kinsey, Luke J.
Von Kannon, Donald G.
Saad, Marwa A.
Birkholz, Taylor R.
Czajka, Jordan M.
Cyrus, Julian
Barnes, Frank S.
Beane, Wendy S.
author_facet Van Huizen, Alanna V.
Morton, Jacob M.
Kinsey, Luke J.
Von Kannon, Donald G.
Saad, Marwa A.
Birkholz, Taylor R.
Czajka, Jordan M.
Cyrus, Julian
Barnes, Frank S.
Beane, Wendy S.
author_sort Van Huizen, Alanna V.
collection PubMed
description Biological systems are constantly exposed to electromagnetic fields (EMFs) in the form of natural geomagnetic fields and EMFs emitted from technology. While strong magnetic fields are known to change chemical reaction rates and free radical concentrations, the debate remains about whether static weak magnetic fields (WMFs; <1 mT) also produce biological effects. Using the planarian regeneration model, we show that WMFs altered stem cell proliferation and subsequent differentiation via changes in reactive oxygen species (ROS) accumulation and downstream heat shock protein 70 (Hsp70) expression. These data reveal that on the basis of field strength, WMF exposure can increase or decrease new tissue formation in vivo, suggesting WMFs as a potential therapeutic tool to manipulate mitotic activity.
format Online
Article
Text
id pubmed-6353618
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-63536182019-02-06 Weak magnetic fields alter stem cell–mediated growth Van Huizen, Alanna V. Morton, Jacob M. Kinsey, Luke J. Von Kannon, Donald G. Saad, Marwa A. Birkholz, Taylor R. Czajka, Jordan M. Cyrus, Julian Barnes, Frank S. Beane, Wendy S. Sci Adv Research Articles Biological systems are constantly exposed to electromagnetic fields (EMFs) in the form of natural geomagnetic fields and EMFs emitted from technology. While strong magnetic fields are known to change chemical reaction rates and free radical concentrations, the debate remains about whether static weak magnetic fields (WMFs; <1 mT) also produce biological effects. Using the planarian regeneration model, we show that WMFs altered stem cell proliferation and subsequent differentiation via changes in reactive oxygen species (ROS) accumulation and downstream heat shock protein 70 (Hsp70) expression. These data reveal that on the basis of field strength, WMF exposure can increase or decrease new tissue formation in vivo, suggesting WMFs as a potential therapeutic tool to manipulate mitotic activity. American Association for the Advancement of Science 2019-01-30 /pmc/articles/PMC6353618/ /pubmed/30729158 http://dx.doi.org/10.1126/sciadv.aau7201 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Van Huizen, Alanna V.
Morton, Jacob M.
Kinsey, Luke J.
Von Kannon, Donald G.
Saad, Marwa A.
Birkholz, Taylor R.
Czajka, Jordan M.
Cyrus, Julian
Barnes, Frank S.
Beane, Wendy S.
Weak magnetic fields alter stem cell–mediated growth
title Weak magnetic fields alter stem cell–mediated growth
title_full Weak magnetic fields alter stem cell–mediated growth
title_fullStr Weak magnetic fields alter stem cell–mediated growth
title_full_unstemmed Weak magnetic fields alter stem cell–mediated growth
title_short Weak magnetic fields alter stem cell–mediated growth
title_sort weak magnetic fields alter stem cell–mediated growth
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353618/
https://www.ncbi.nlm.nih.gov/pubmed/30729158
http://dx.doi.org/10.1126/sciadv.aau7201
work_keys_str_mv AT vanhuizenalannav weakmagneticfieldsalterstemcellmediatedgrowth
AT mortonjacobm weakmagneticfieldsalterstemcellmediatedgrowth
AT kinseylukej weakmagneticfieldsalterstemcellmediatedgrowth
AT vonkannondonaldg weakmagneticfieldsalterstemcellmediatedgrowth
AT saadmarwaa weakmagneticfieldsalterstemcellmediatedgrowth
AT birkholztaylorr weakmagneticfieldsalterstemcellmediatedgrowth
AT czajkajordanm weakmagneticfieldsalterstemcellmediatedgrowth
AT cyrusjulian weakmagneticfieldsalterstemcellmediatedgrowth
AT barnesfranks weakmagneticfieldsalterstemcellmediatedgrowth
AT beanewendys weakmagneticfieldsalterstemcellmediatedgrowth