Cargando…

A Rational Approach for Creating Peptides Mimicking Antibody Binding

This study reports a novel method to design peptides that mimic antibody binding. Using the Knob-Socket model for protein-protein interaction, the interaction surface between Cetuximab and EGFR was mapped. EGFR binding peptides were designed based on geometry and the probability of the mapped knob-s...

Descripción completa

Detalles Bibliográficos
Autores principales: Sachdeva, Sameer, Joo, Hyun, Tsai, Jerry, Jasti, Bhaskara, Li, Xiaoling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353898/
https://www.ncbi.nlm.nih.gov/pubmed/30700733
http://dx.doi.org/10.1038/s41598-018-37201-6
Descripción
Sumario:This study reports a novel method to design peptides that mimic antibody binding. Using the Knob-Socket model for protein-protein interaction, the interaction surface between Cetuximab and EGFR was mapped. EGFR binding peptides were designed based on geometry and the probability of the mapped knob-sockets pairs. Designed peptides were synthesized and then characterized for binding specificity, affinity, cytotoxicity of drug-peptide conjugate and inhibition of phosphorylation. In cell culture studies, designed peptides specifically bind and internalize to EGFR overexpressing cells with three to four-fold higher uptake compared to control cells that do not overexpress EGFR. The designed peptide, Pep11, bound to EGFR with K(D) of 252 nM. Cytotoxicity of Monomethyl Auristatin E (MMAE)-EGFR-Pep11 peptide-drug conjugate was more than 2,000 fold higher against EGFR overexpressing cell lines A431, MDA MB 468 than control HEK 293 cells which lack EGFR overexpression. MMAE-EGFR-Pep11 conjugate also showed more than 90-fold lower cytotoxicity towards non-EGFR overexpressing HEK 293 cells when compared with cytotoxicity of MMAE itself. In conclusion, a method that can rationally design peptides using knob-socket model is presented. This method was successfully applied to create peptides based on the antigen-antibody interaction to mimic the specificity, affinity and functionality of antibody.