Cargando…
Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities
Examples of fully integrated machine learning models that drive clinical care are rare. Despite major advances in the development of methodologies that outperform clinical experts and growing prominence of machine learning in mainstream medical literature, major challenges remain. At Duke Health, we...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ubiquity Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354017/ https://www.ncbi.nlm.nih.gov/pubmed/30705919 http://dx.doi.org/10.5334/egems.287 |
_version_ | 1783391088009019392 |
---|---|
author | Sendak, Mark Gao, Michael Nichols, Marshall Lin, Anthony Balu, Suresh |
author_facet | Sendak, Mark Gao, Michael Nichols, Marshall Lin, Anthony Balu, Suresh |
author_sort | Sendak, Mark |
collection | PubMed |
description | Examples of fully integrated machine learning models that drive clinical care are rare. Despite major advances in the development of methodologies that outperform clinical experts and growing prominence of machine learning in mainstream medical literature, major challenges remain. At Duke Health, we are in our fourth year developing, piloting, and implementing machine learning technologies in clinical care. To advance the translation of machine learning into clinical care, health system leaders must address barriers to progress and make strategic investments necessary to bring health care into a new digital age. Machine learning can improve clinical workflows in subtle ways that are distinct from how statistics has shaped medicine. However, most machine learning research occurs in siloes, and there are important, unresolved questions about how to retrain and validate models post-deployment. Academic medical centers that cultivate and value transdisciplinary collaboration are ideally suited to integrate machine learning in clinical care. Along with fostering collaborative environments, health system leaders must invest in developing new capabilities within the workforce and technology infrastructure beyond standard electronic health records. Now is the opportunity to break down barriers and achieve scalable growth in the number of high-impact collaborations between clinical researchers and machine learning experts to transform clinical care. |
format | Online Article Text |
id | pubmed-6354017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Ubiquity Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-63540172019-01-31 Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities Sendak, Mark Gao, Michael Nichols, Marshall Lin, Anthony Balu, Suresh EGEMS (Wash DC) Commentary/Editorial Examples of fully integrated machine learning models that drive clinical care are rare. Despite major advances in the development of methodologies that outperform clinical experts and growing prominence of machine learning in mainstream medical literature, major challenges remain. At Duke Health, we are in our fourth year developing, piloting, and implementing machine learning technologies in clinical care. To advance the translation of machine learning into clinical care, health system leaders must address barriers to progress and make strategic investments necessary to bring health care into a new digital age. Machine learning can improve clinical workflows in subtle ways that are distinct from how statistics has shaped medicine. However, most machine learning research occurs in siloes, and there are important, unresolved questions about how to retrain and validate models post-deployment. Academic medical centers that cultivate and value transdisciplinary collaboration are ideally suited to integrate machine learning in clinical care. Along with fostering collaborative environments, health system leaders must invest in developing new capabilities within the workforce and technology infrastructure beyond standard electronic health records. Now is the opportunity to break down barriers and achieve scalable growth in the number of high-impact collaborations between clinical researchers and machine learning experts to transform clinical care. Ubiquity Press 2019-01-24 /pmc/articles/PMC6354017/ /pubmed/30705919 http://dx.doi.org/10.5334/egems.287 Text en Copyright: © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Commentary/Editorial Sendak, Mark Gao, Michael Nichols, Marshall Lin, Anthony Balu, Suresh Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities |
title | Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities |
title_full | Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities |
title_fullStr | Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities |
title_full_unstemmed | Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities |
title_short | Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities |
title_sort | machine learning in health care: a critical appraisal of challenges and opportunities |
topic | Commentary/Editorial |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354017/ https://www.ncbi.nlm.nih.gov/pubmed/30705919 http://dx.doi.org/10.5334/egems.287 |
work_keys_str_mv | AT sendakmark machinelearninginhealthcareacriticalappraisalofchallengesandopportunities AT gaomichael machinelearninginhealthcareacriticalappraisalofchallengesandopportunities AT nicholsmarshall machinelearninginhealthcareacriticalappraisalofchallengesandopportunities AT linanthony machinelearninginhealthcareacriticalappraisalofchallengesandopportunities AT balusuresh machinelearninginhealthcareacriticalappraisalofchallengesandopportunities |