Cargando…
Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury
Traumatic brain injury (TBI) is a leading cause of mortality and disability worldwide. Although treatment guidelines have been developed, no best treatment option or medicine for this condition exists. Recently, mesenchymal stem cells (MSCs)-derived exosomes have shown lots of promise for the treatm...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354067/ https://www.ncbi.nlm.nih.gov/pubmed/30733666 http://dx.doi.org/10.3389/fnins.2019.00014 |
_version_ | 1783391105965883392 |
---|---|
author | Ni, Haoqi Yang, Su Siaw-Debrah, Felix Hu, Jiangnan Wu, Ke He, Zibin Yang, Jianjing Pan, Sishi Lin, Xiao Ye, Haotuo Xu, Zhu Wang, Fan Jin, Kunlin Zhuge, Qichuan Huang, Lijie |
author_facet | Ni, Haoqi Yang, Su Siaw-Debrah, Felix Hu, Jiangnan Wu, Ke He, Zibin Yang, Jianjing Pan, Sishi Lin, Xiao Ye, Haotuo Xu, Zhu Wang, Fan Jin, Kunlin Zhuge, Qichuan Huang, Lijie |
author_sort | Ni, Haoqi |
collection | PubMed |
description | Traumatic brain injury (TBI) is a leading cause of mortality and disability worldwide. Although treatment guidelines have been developed, no best treatment option or medicine for this condition exists. Recently, mesenchymal stem cells (MSCs)-derived exosomes have shown lots of promise for the treatment of brain disorders, with some results highlighting the neuroprotective effects through neurogenesis and angiogenesis after TBI. However, studies focusing on the role of exosomes in the early stages of neuroinflammation post-TBI are not sufficient. In this study, we investigated the role of bone mesenchymal stem cells (BMSCs)-exosomes in attenuating neuroinflammation at an early stage post-TBI and explored the potential regulatory neuroprotective mechanism. We administered 30 μg protein of BMSCs-exosomes or an equal volume of phosphate-buffered saline (PBS) via the retro-orbital route into C57BL/6 male mice 15 min after controlled cortical impact (CCI)-induced TBI. The results showed that the administration of BMSCs-exosomes reduced the lesion size and improved the neurobehavioral performance assessed by modified Neurological Severity Score (mNSS) and rotarod test. In addition, BMSCs-exosomes inhibited the expression of proapoptosis protein Bcl-2-associated X protein (BAX) and proinflammation cytokines, tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β, while enhancing the expression of the anti-apoptosis protein B-cell lymphoma 2 (BCL-2). Furthermore, BMSCs-exosomes modulated microglia/macrophage polarization by downregulating the expression of inducible nitric oxide synthase (INOS) and upregulating the expression of clusters of differentiation 206 (CD206) and arginase-1 (Arg1). In summary, our result shows that BMSCs-exosomes serve a neuroprotective function by inhibiting early neuroinflammation in TBI mice through modulating the polarization of microglia/macrophages. Further research into this may serve as a potential therapeutic strategy for the future treatment of TBI. |
format | Online Article Text |
id | pubmed-6354067 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63540672019-02-07 Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury Ni, Haoqi Yang, Su Siaw-Debrah, Felix Hu, Jiangnan Wu, Ke He, Zibin Yang, Jianjing Pan, Sishi Lin, Xiao Ye, Haotuo Xu, Zhu Wang, Fan Jin, Kunlin Zhuge, Qichuan Huang, Lijie Front Neurosci Neuroscience Traumatic brain injury (TBI) is a leading cause of mortality and disability worldwide. Although treatment guidelines have been developed, no best treatment option or medicine for this condition exists. Recently, mesenchymal stem cells (MSCs)-derived exosomes have shown lots of promise for the treatment of brain disorders, with some results highlighting the neuroprotective effects through neurogenesis and angiogenesis after TBI. However, studies focusing on the role of exosomes in the early stages of neuroinflammation post-TBI are not sufficient. In this study, we investigated the role of bone mesenchymal stem cells (BMSCs)-exosomes in attenuating neuroinflammation at an early stage post-TBI and explored the potential regulatory neuroprotective mechanism. We administered 30 μg protein of BMSCs-exosomes or an equal volume of phosphate-buffered saline (PBS) via the retro-orbital route into C57BL/6 male mice 15 min after controlled cortical impact (CCI)-induced TBI. The results showed that the administration of BMSCs-exosomes reduced the lesion size and improved the neurobehavioral performance assessed by modified Neurological Severity Score (mNSS) and rotarod test. In addition, BMSCs-exosomes inhibited the expression of proapoptosis protein Bcl-2-associated X protein (BAX) and proinflammation cytokines, tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β, while enhancing the expression of the anti-apoptosis protein B-cell lymphoma 2 (BCL-2). Furthermore, BMSCs-exosomes modulated microglia/macrophage polarization by downregulating the expression of inducible nitric oxide synthase (INOS) and upregulating the expression of clusters of differentiation 206 (CD206) and arginase-1 (Arg1). In summary, our result shows that BMSCs-exosomes serve a neuroprotective function by inhibiting early neuroinflammation in TBI mice through modulating the polarization of microglia/macrophages. Further research into this may serve as a potential therapeutic strategy for the future treatment of TBI. Frontiers Media S.A. 2019-01-24 /pmc/articles/PMC6354067/ /pubmed/30733666 http://dx.doi.org/10.3389/fnins.2019.00014 Text en Copyright © 2019 Ni, Yang, Siaw-Debrah, Hu, Wu, He, Yang, Pan, Lin, Ye, Xu, Wang, Jin, Zhuge and Huang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Ni, Haoqi Yang, Su Siaw-Debrah, Felix Hu, Jiangnan Wu, Ke He, Zibin Yang, Jianjing Pan, Sishi Lin, Xiao Ye, Haotuo Xu, Zhu Wang, Fan Jin, Kunlin Zhuge, Qichuan Huang, Lijie Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury |
title | Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury |
title_full | Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury |
title_fullStr | Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury |
title_full_unstemmed | Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury |
title_short | Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury |
title_sort | exosomes derived from bone mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354067/ https://www.ncbi.nlm.nih.gov/pubmed/30733666 http://dx.doi.org/10.3389/fnins.2019.00014 |
work_keys_str_mv | AT nihaoqi exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT yangsu exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT siawdebrahfelix exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT hujiangnan exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT wuke exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT hezibin exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT yangjianjing exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT pansishi exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT linxiao exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT yehaotuo exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT xuzhu exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT wangfan exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT jinkunlin exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT zhugeqichuan exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury AT huanglijie exosomesderivedfrombonemesenchymalstemcellsameliorateearlyinflammatoryresponsesfollowingtraumaticbraininjury |