Cargando…
Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements
BACKGROUND: The development of acute kidney injury (AKI) during an intensive care unit (ICU) admission is associated with increased morbidity and mortality. METHODS: Our objective was to develop and validate a data driven multivariable clinical predictive model for early detection of AKI among a lar...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354330/ https://www.ncbi.nlm.nih.gov/pubmed/30700291 http://dx.doi.org/10.1186/s12911-019-0733-z |
_version_ | 1783391162905657344 |
---|---|
author | Zimmerman, Lindsay P. Reyfman, Paul A. Smith, Angela D. R. Zeng, Zexian Kho, Abel Sanchez-Pinto, L. Nelson Luo, Yuan |
author_facet | Zimmerman, Lindsay P. Reyfman, Paul A. Smith, Angela D. R. Zeng, Zexian Kho, Abel Sanchez-Pinto, L. Nelson Luo, Yuan |
author_sort | Zimmerman, Lindsay P. |
collection | PubMed |
description | BACKGROUND: The development of acute kidney injury (AKI) during an intensive care unit (ICU) admission is associated with increased morbidity and mortality. METHODS: Our objective was to develop and validate a data driven multivariable clinical predictive model for early detection of AKI among a large cohort of adult critical care patients. We utilized data form the Medical Information Mart for Intensive Care III (MIMIC-III) for all patients who had a creatinine measured for 3 days following ICU admission and excluded patients with pre-existing condition of Chronic Kidney Disease and Acute Kidney Injury on admission. Data extracted included patient age, gender, ethnicity, creatinine, other vital signs and lab values during the first day of ICU admission, whether the patient was mechanically ventilated during the first day of ICU admission, and the hourly rate of urine output during the first day of ICU admission. RESULTS: Utilizing the demographics, the clinical data and the laboratory test measurements from Day 1 of ICU admission, we accurately predicted max serum creatinine level during Day 2 and Day 3 with a root mean square error of 0.224 mg/dL. We demonstrated that using machine learning models (multivariate logistic regression, random forest and artificial neural networks) with demographics and physiologic features can predict AKI onset as defined by the current clinical guideline with a competitive AUC (mean AUC 0.783 by our all-feature, logistic-regression model), while previous models aimed at more specific patient cohorts. CONCLUSIONS: Experimental results suggest that our model has the potential to assist clinicians in identifying patients at greater risk of new onset of AKI in critical care setting. Prospective trials with independent model training and external validation cohorts are needed to further evaluate the clinical utility of this approach and potentially instituting interventions to decrease the likelihood of developing AKI. |
format | Online Article Text |
id | pubmed-6354330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63543302019-02-06 Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements Zimmerman, Lindsay P. Reyfman, Paul A. Smith, Angela D. R. Zeng, Zexian Kho, Abel Sanchez-Pinto, L. Nelson Luo, Yuan BMC Med Inform Decis Mak Research BACKGROUND: The development of acute kidney injury (AKI) during an intensive care unit (ICU) admission is associated with increased morbidity and mortality. METHODS: Our objective was to develop and validate a data driven multivariable clinical predictive model for early detection of AKI among a large cohort of adult critical care patients. We utilized data form the Medical Information Mart for Intensive Care III (MIMIC-III) for all patients who had a creatinine measured for 3 days following ICU admission and excluded patients with pre-existing condition of Chronic Kidney Disease and Acute Kidney Injury on admission. Data extracted included patient age, gender, ethnicity, creatinine, other vital signs and lab values during the first day of ICU admission, whether the patient was mechanically ventilated during the first day of ICU admission, and the hourly rate of urine output during the first day of ICU admission. RESULTS: Utilizing the demographics, the clinical data and the laboratory test measurements from Day 1 of ICU admission, we accurately predicted max serum creatinine level during Day 2 and Day 3 with a root mean square error of 0.224 mg/dL. We demonstrated that using machine learning models (multivariate logistic regression, random forest and artificial neural networks) with demographics and physiologic features can predict AKI onset as defined by the current clinical guideline with a competitive AUC (mean AUC 0.783 by our all-feature, logistic-regression model), while previous models aimed at more specific patient cohorts. CONCLUSIONS: Experimental results suggest that our model has the potential to assist clinicians in identifying patients at greater risk of new onset of AKI in critical care setting. Prospective trials with independent model training and external validation cohorts are needed to further evaluate the clinical utility of this approach and potentially instituting interventions to decrease the likelihood of developing AKI. BioMed Central 2019-01-31 /pmc/articles/PMC6354330/ /pubmed/30700291 http://dx.doi.org/10.1186/s12911-019-0733-z Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Zimmerman, Lindsay P. Reyfman, Paul A. Smith, Angela D. R. Zeng, Zexian Kho, Abel Sanchez-Pinto, L. Nelson Luo, Yuan Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements |
title | Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements |
title_full | Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements |
title_fullStr | Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements |
title_full_unstemmed | Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements |
title_short | Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements |
title_sort | early prediction of acute kidney injury following icu admission using a multivariate panel of physiological measurements |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354330/ https://www.ncbi.nlm.nih.gov/pubmed/30700291 http://dx.doi.org/10.1186/s12911-019-0733-z |
work_keys_str_mv | AT zimmermanlindsayp earlypredictionofacutekidneyinjuryfollowingicuadmissionusingamultivariatepanelofphysiologicalmeasurements AT reyfmanpaula earlypredictionofacutekidneyinjuryfollowingicuadmissionusingamultivariatepanelofphysiologicalmeasurements AT smithangeladr earlypredictionofacutekidneyinjuryfollowingicuadmissionusingamultivariatepanelofphysiologicalmeasurements AT zengzexian earlypredictionofacutekidneyinjuryfollowingicuadmissionusingamultivariatepanelofphysiologicalmeasurements AT khoabel earlypredictionofacutekidneyinjuryfollowingicuadmissionusingamultivariatepanelofphysiologicalmeasurements AT sanchezpintolnelson earlypredictionofacutekidneyinjuryfollowingicuadmissionusingamultivariatepanelofphysiologicalmeasurements AT luoyuan earlypredictionofacutekidneyinjuryfollowingicuadmissionusingamultivariatepanelofphysiologicalmeasurements |