Cargando…
Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text
BACKGROUND: Extracting relations between important clinical entities is critical but very challenging for natural language processing (NLP) in the medical domain. Researchers have applied deep learning-based approaches to clinical relation extraction; but most of them consider sentence sequence only...
Autores principales: | Li, Zhiheng, Yang, Zhihao, Shen, Chen, Xu, Jun, Zhang, Yaoyun, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354333/ https://www.ncbi.nlm.nih.gov/pubmed/30700301 http://dx.doi.org/10.1186/s12911-019-0736-9 |
Ejemplares similares
-
Drug–drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths
por: Zhang, Yijia, et al.
Publicado: (2018) -
A Shortest Dependency Path Based Convolutional Neural Network for Protein-Protein Relation Extraction
por: Hua, Lei, et al.
Publicado: (2016) -
Shortest Paths in Multiplex Networks
por: Ghariblou, Saeed, et al.
Publicado: (2017) -
Shortest path and Schramm-Loewner Evolution
por: Posé, N., et al.
Publicado: (2014) -
DiversePathsJ: diverse shortest paths for bioimage analysis
por: Uhlmann, Virginie, et al.
Publicado: (2018)