Cargando…
Concomitant type I IFN and M-CSF signaling reprograms monocyte differentiation and drives pro-tumoral arginase production
BACKGROUND: Type I IFN-based therapies against solid malignancies have yielded only limited success. How IFN affects tumor-associated macrophage (TAM) compartment to impact the therapeutic outcomes are not well understood. METHODS: The effect of an IFN-inducer poly(I:C) on tumor-infiltrating monocyt...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354658/ https://www.ncbi.nlm.nih.gov/pubmed/30528455 http://dx.doi.org/10.1016/j.ebiom.2018.11.062 |
Sumario: | BACKGROUND: Type I IFN-based therapies against solid malignancies have yielded only limited success. How IFN affects tumor-associated macrophage (TAM) compartment to impact the therapeutic outcomes are not well understood. METHODS: The effect of an IFN-inducer poly(I:C) on tumor-infiltrating monocytes and TAMs were analyzed using a transplantable mouse tumor model (LLC). In vitro culture systems were utilized to study the direct actions by poly(I:C)-IFN on differentiating monocytes. RESULTS: We found that poly(I:C)-induced IFN targets Ly6C(+) monocytes and impedes their transition into TAMs. Such an effect involves miR-155-mediated suppression of M-CSF receptor expression, contributing to restricting tumor growth. Remarkably, further analyses of gene expression profile of IFN-treated differentiating monocytes reveal a strong induction of Arg1 (encoding arginase-1) in addition to other classical IFN targets. Mechanistically, the unexpected Arg1 arm of IFN action is mediated by a prolonged STAT3 signaling in monocytes, in conjunction with elevated macrophage colony-stimulating factor (M-CSF) signaling. Functionally, induction of ARG1 limited the therapeutic effect of IFN, as inhibition of arginase activity could strongly synergize with poly(I:C) to enhance CD8(+) T cell responses to thwart tumor growth in mice. CONCLUSIONS: Taken together, we have uncovered two functionally opposing actions by IFN on the TAM compartment. Our work provides significant new insights on IFN-mediated immunoregulation that may have implications in cancer therapies. |
---|