Cargando…
EMT network-based feature selection improves prognosis prediction in lung adenocarcinoma
Various feature selection algorithms have been proposed to identify cancer prognostic biomarkers. In recent years, however, their reproducibility is criticized. The performance of feature selection algorithms is shown to be affected by the datasets, underlying networks and evaluation metrics. One of...
Autores principales: | Shao, Borong, Bjaanæs, Maria Moksnes, Helland, Åslaug, Schütte, Christof, Conrad, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354965/ https://www.ncbi.nlm.nih.gov/pubmed/30703089 http://dx.doi.org/10.1371/journal.pone.0204186 |
Ejemplares similares
-
Whole genome copy number analyses reveal a highly aberrant genome in TP53 mutant lung adenocarcinoma tumors
por: Bjaanæs, Maria Moksnes, et al.
Publicado: (2021) -
Genome‐wide DNA methylation analyses in lung adenocarcinomas: Association with EGFR, KRAS and TP53 mutation status, gene expression and prognosis
por: Bjaanæs, Maria Moksnes, et al.
Publicado: (2015) -
Unique microRNA-profiles in EGFR-mutated lung adenocarcinomas
por: Bjaanæs, Maria Moksnes, et al.
Publicado: (2014) -
The MYCN-HMGA2-CDKN2A pathway in non-small cell lung carcinoma—differences in histological subtypes
por: Eide, Hanne A., et al.
Publicado: (2016) -
Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
por: Dong, Xuesi, et al.
Publicado: (2019)