Cargando…
Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex
With relatively few known specific transcription factors to control the abundance of specific mRNAs, Plasmodium parasites may rely more on the regulation of transcript stability and turnover to provide sufficient gene regulation. Plasmodium transmission stages impose translational repression on spec...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355032/ https://www.ncbi.nlm.nih.gov/pubmed/30703164 http://dx.doi.org/10.1371/journal.ppat.1007164 |
_version_ | 1783391294429593600 |
---|---|
author | Hart, Kevin J. Oberstaller, Jenna Walker, Michael P. Minns, Allen M. Kennedy, Mark F. Padykula, Ian Adams, John H. Lindner, Scott E. |
author_facet | Hart, Kevin J. Oberstaller, Jenna Walker, Michael P. Minns, Allen M. Kennedy, Mark F. Padykula, Ian Adams, John H. Lindner, Scott E. |
author_sort | Hart, Kevin J. |
collection | PubMed |
description | With relatively few known specific transcription factors to control the abundance of specific mRNAs, Plasmodium parasites may rely more on the regulation of transcript stability and turnover to provide sufficient gene regulation. Plasmodium transmission stages impose translational repression on specific transcripts in part to accomplish this. However, few proteins are known to participate in this process, and those that are characterized primarily affect female gametocytes. We have identified and characterized Plasmodium yoelii (Py) CCR4-1, a putative deadenylase, which plays a role in the development and activation of male gametocytes, regulates the abundance of specific mRNAs in gametocytes, and ultimately increases the efficiency of host-to-vector transmission. We find that when pyccr4-1 is deleted or its protein made catalytically inactive, there is a loss in the initial coordination of male gametocyte maturation and a reduction of parasite infectivity of the mosquito. Expression of only the N-terminal CAF1 domain of the essential CAF1 deadenylase leads to a similar phenotype. Comparative RNA-seq revealed that PyCCR4-1 affects transcripts important for transmission-related functions that are associated with male or female gametocytes, some of which directly associate with the immunoprecipitated complex. Finally, circular RT-PCR of one of the bound, dysregulated transcripts showed that deletion of the pyccr4-1 gene does not result in gross changes to its UTR or poly(A) tail length. We conclude that the two putative deadenylases of the CAF1/CCR4/NOT complex play critical and intertwined roles in gametocyte maturation and transmission. |
format | Online Article Text |
id | pubmed-6355032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63550322019-02-15 Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex Hart, Kevin J. Oberstaller, Jenna Walker, Michael P. Minns, Allen M. Kennedy, Mark F. Padykula, Ian Adams, John H. Lindner, Scott E. PLoS Pathog Research Article With relatively few known specific transcription factors to control the abundance of specific mRNAs, Plasmodium parasites may rely more on the regulation of transcript stability and turnover to provide sufficient gene regulation. Plasmodium transmission stages impose translational repression on specific transcripts in part to accomplish this. However, few proteins are known to participate in this process, and those that are characterized primarily affect female gametocytes. We have identified and characterized Plasmodium yoelii (Py) CCR4-1, a putative deadenylase, which plays a role in the development and activation of male gametocytes, regulates the abundance of specific mRNAs in gametocytes, and ultimately increases the efficiency of host-to-vector transmission. We find that when pyccr4-1 is deleted or its protein made catalytically inactive, there is a loss in the initial coordination of male gametocyte maturation and a reduction of parasite infectivity of the mosquito. Expression of only the N-terminal CAF1 domain of the essential CAF1 deadenylase leads to a similar phenotype. Comparative RNA-seq revealed that PyCCR4-1 affects transcripts important for transmission-related functions that are associated with male or female gametocytes, some of which directly associate with the immunoprecipitated complex. Finally, circular RT-PCR of one of the bound, dysregulated transcripts showed that deletion of the pyccr4-1 gene does not result in gross changes to its UTR or poly(A) tail length. We conclude that the two putative deadenylases of the CAF1/CCR4/NOT complex play critical and intertwined roles in gametocyte maturation and transmission. Public Library of Science 2019-01-31 /pmc/articles/PMC6355032/ /pubmed/30703164 http://dx.doi.org/10.1371/journal.ppat.1007164 Text en © 2019 Hart et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hart, Kevin J. Oberstaller, Jenna Walker, Michael P. Minns, Allen M. Kennedy, Mark F. Padykula, Ian Adams, John H. Lindner, Scott E. Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex |
title | Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex |
title_full | Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex |
title_fullStr | Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex |
title_full_unstemmed | Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex |
title_short | Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex |
title_sort | plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the caf1/ccr4/not complex |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355032/ https://www.ncbi.nlm.nih.gov/pubmed/30703164 http://dx.doi.org/10.1371/journal.ppat.1007164 |
work_keys_str_mv | AT hartkevinj plasmodiummalegametocytedevelopmentandtransmissionarecriticallyregulatedbythetwoputativedeadenylasesofthecaf1ccr4notcomplex AT oberstallerjenna plasmodiummalegametocytedevelopmentandtransmissionarecriticallyregulatedbythetwoputativedeadenylasesofthecaf1ccr4notcomplex AT walkermichaelp plasmodiummalegametocytedevelopmentandtransmissionarecriticallyregulatedbythetwoputativedeadenylasesofthecaf1ccr4notcomplex AT minnsallenm plasmodiummalegametocytedevelopmentandtransmissionarecriticallyregulatedbythetwoputativedeadenylasesofthecaf1ccr4notcomplex AT kennedymarkf plasmodiummalegametocytedevelopmentandtransmissionarecriticallyregulatedbythetwoputativedeadenylasesofthecaf1ccr4notcomplex AT padykulaian plasmodiummalegametocytedevelopmentandtransmissionarecriticallyregulatedbythetwoputativedeadenylasesofthecaf1ccr4notcomplex AT adamsjohnh plasmodiummalegametocytedevelopmentandtransmissionarecriticallyregulatedbythetwoputativedeadenylasesofthecaf1ccr4notcomplex AT lindnerscotte plasmodiummalegametocytedevelopmentandtransmissionarecriticallyregulatedbythetwoputativedeadenylasesofthecaf1ccr4notcomplex |