Cargando…

miRNA-101-5p inhibits the growth and aggressiveness of NSCLC cells through targeting CXCL6

BACKGROUND: The purpose of this study is to explore the potential biological roles of miR-101-5p in the progression of non-small-cell lung carcinoma (NSCLC). METHODS: The levels of miR-101-5p and chemokine (C-X-C motif) ligand 6 (CXCL6) in NSCLC tissues and cells were detected using the quantitative...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Qi, Liu, Dan, Hu, Zhi, Luo, Cheng, Zheng, Si Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355169/
https://www.ncbi.nlm.nih.gov/pubmed/30774371
http://dx.doi.org/10.2147/OTT.S184235
Descripción
Sumario:BACKGROUND: The purpose of this study is to explore the potential biological roles of miR-101-5p in the progression of non-small-cell lung carcinoma (NSCLC). METHODS: The levels of miR-101-5p and chemokine (C-X-C motif) ligand 6 (CXCL6) in NSCLC tissues and cells were detected using the quantitative real-time PCR (qRT-PCR) assay. Proliferation, colony formation, migration and invasion assays were conducted using miR-101-5p-transfected NSCLC cells in vitro. The expression of CXCL6 was measured using immunofluorescence assay. Xenograft model and lung metastasis model were constructed to further reveal the precise roles of miR-101-5p in the lung metastasis and growth of NSCLC cells in vivo. RESULTS: miR-101-5p was underregulated in NSCLC tissues when compared with that in the normal controls. The levels of miR-101-5p were lower in NSCLC cells (H1975, A549, HCC827 and H1650) than in non-tumorigenic human bronchial epithelial cells (BEAS-2B). Overregulation of miR-101-5p restrained the aggressiveness phenotypes of NSCLC cells in vitro. Furthermore, overregulation of miR-101-5p reduced the tumor growth and pulmonary metastasis of NSCLC cells in vivo. CXCL6 was the target gene of miR-101-5p in NSCLC. The mRNA levels of CXCL6 were negatively associated with the levels of miR-101-5p in NSCLC tissues. Finally, the rescue experiments suggested that the inhibitory role of miR-101-5p was mediated by regulating the expression of CXCL6 in NSCLC. CONCLUSION: These findings indicated that overregulation of miR-101-5p restrained the progression of NSCLC cells by targeting CXCL6 and might function as a potential therapeutic target for NSCLC.