Cargando…

Structural basis of Ca(2+)-dependent activation and lipid transport by a TMEM16 scramblase

The lipid distribution of plasma membranes of eukaryotic cells is asymmetric and phospholipid scramblases disrupt this asymmetry by mediating the rapid, nonselective transport of lipids down their concentration gradients. As a result, phosphatidylserine is exposed to the outer leaflet of membrane, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Falzone, Maria E, Rheinberger, Jan, Lee, Byoung-Cheol, Peyear, Thasin, Sasset, Linda, Raczkowski, Ashleigh M, Eng, Edward T, Di Lorenzo, Annarita, Andersen, Olaf S, Nimigean, Crina M, Accardi, Alessio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355197/
https://www.ncbi.nlm.nih.gov/pubmed/30648972
http://dx.doi.org/10.7554/eLife.43229
Descripción
Sumario:The lipid distribution of plasma membranes of eukaryotic cells is asymmetric and phospholipid scramblases disrupt this asymmetry by mediating the rapid, nonselective transport of lipids down their concentration gradients. As a result, phosphatidylserine is exposed to the outer leaflet of membrane, an important step in extracellular signaling networks controlling processes such as apoptosis, blood coagulation, membrane fusion and repair. Several TMEM16 family members have been identified as Ca(2+)-activated scramblases, but the mechanisms underlying their Ca(2+)-dependent gating and their effects on the surrounding lipid bilayer remain poorly understood. Here, we describe three high-resolution cryo-electron microscopy structures of a fungal scramblase from Aspergillus fumigatus, afTMEM16, reconstituted in lipid nanodiscs. These structures reveal that Ca(2+)-dependent activation of the scramblase entails global rearrangement of the transmembrane and cytosolic domains. These structures, together with functional experiments, suggest that activation of the protein thins the membrane near the transport pathway to facilitate rapid transbilayer lipid movement.