Cargando…
EGF-induced nuclear localization of SHCBP1 activates β-catenin signaling and promotes cancer progression
Aberrant activation of EGFR represents a common event in non-small cell lung carcinoma (NSCLC) and activates various downstream signaling pathways. While EGFR activation of β-catenin signaling was previously reported, the mediating mechanism remains unclear. Our current study found that EGFR activat...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355651/ https://www.ncbi.nlm.nih.gov/pubmed/30177836 http://dx.doi.org/10.1038/s41388-018-0473-z |
Sumario: | Aberrant activation of EGFR represents a common event in non-small cell lung carcinoma (NSCLC) and activates various downstream signaling pathways. While EGFR activation of β-catenin signaling was previously reported, the mediating mechanism remains unclear. Our current study found that EGFR activation in NSCLC cells releases SHC-binging protein 1 (SHCBP1) from SHC adaptor protein 1 (SHC1), which subsequently translocates into the nucleus and directly promotes the transactivating activity of β-catenin, consequently resulting in development of NSCLC cell stemness and malignant progression. Furthermore, SHCBP1 promotes β-catenin activity through enhancing the CBP/β-catenin interaction, and most interestingly, a candidate drug that blocks the CBP/β-catenin binding effectively abrogates the aforementioned biological effects of SHCBP1. Clinically, SHCBP1 level in NSCLC tumors was found to inversely correlate with patient survival. Together, our study establishes a novel convergence between EGFR and β-catenin pathways and highlights a potential significance of SHCBP1 as a prognostic biomarker and a therapeutic target. |
---|