Cargando…
A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning
With the advancement of treatment modalities in radiation therapy for cancer patients, outcomes have improved, but at the cost of increased treatment plan complexity and planning time. The accurate prediction of dose distributions would alleviate this issue by guiding clinical plan optimization to s...
Autores principales: | Nguyen, Dan, Long, Troy, Jia, Xun, Lu, Weiguo, Gu, Xuejun, Iqbal, Zohaib, Jiang, Steve |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355802/ https://www.ncbi.nlm.nih.gov/pubmed/30705354 http://dx.doi.org/10.1038/s41598-018-37741-x |
Ejemplares similares
-
Accurate real time localization tracking in a clinical environment using Bluetooth Low Energy and deep learning
por: Iqbal, Zohaib, et al.
Publicado: (2018) -
Deep learning can accelerate and quantify simulated localized correlated spectroscopy
por: Iqbal, Zohaib, et al.
Publicado: (2021) -
Boosting radiotherapy dose calculation accuracy with deep learning
por: Xing, Yixun, et al.
Publicado: (2020) -
A feasibility study on an automated method to generate patient‐specific dose distributions for radiotherapy using deep learning
por: Chen, Xinyuan, et al.
Publicado: (2018) -
Super-Resolution (1)H Magnetic Resonance Spectroscopic Imaging Utilizing Deep Learning
por: Iqbal, Zohaib, et al.
Publicado: (2019)