Cargando…
Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages
High-grade gliomas are the most aggressive malignant brain tumors. Accurate pre-operative prognosis for this cohort can lead to better treatment planning. Conventional survival prediction based on clinical information is subjective and could be inaccurate. Recent radiomics studies have shown better...
Autores principales: | Nie, Dong, Lu, Junfeng, Zhang, Han, Adeli, Ehsan, Wang, Jun, Yu, Zhengda, Liu, LuYan, Wang, Qian, Wu, Jinsong, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355868/ https://www.ncbi.nlm.nih.gov/pubmed/30705340 http://dx.doi.org/10.1038/s41598-018-37387-9 |
Ejemplares similares
-
Editorial: Biomarkers from multi-tracer and multi-modal neuroimaging in age-related neurodegenerative diseases
por: Nie, Binbin
Publicado: (2022) -
A multi-subject, multi-modal human neuroimaging dataset
por: Wakeman, Daniel G, et al.
Publicado: (2015) -
Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer’s Disease
por: Meng, Xianglian, et al.
Publicado: (2022) -
Biopsy Confirmed Glioma Recurrence Predicted by Multi-Modal Neuroimaging Metrics
por: Costabile, Jamie D., et al.
Publicado: (2019) -
Using multi-modal neuroimaging to characterise social brain specialisation in infants
por: Siddiqui, Maheen, et al.
Publicado: (2023)