Cargando…
Emergence of a field-driven U(1) spin liquid in the Kitaev honeycomb model
In the field of quantum magnetism, the exactly solvable Kitaev honeycomb model serves as a paradigm for the fractionalization of spin degrees of freedom and the formation of [Formula: see text] quantum spin liquids. An intense experimental search has led to the discovery of a number of spin-orbit en...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355955/ https://www.ncbi.nlm.nih.gov/pubmed/30705263 http://dx.doi.org/10.1038/s41467-019-08459-9 |
Sumario: | In the field of quantum magnetism, the exactly solvable Kitaev honeycomb model serves as a paradigm for the fractionalization of spin degrees of freedom and the formation of [Formula: see text] quantum spin liquids. An intense experimental search has led to the discovery of a number of spin-orbit entangled Mott insulators that realize its characteristic bond-directional interactions and, in the presence of magnetic fields, exhibit no indications of long-range order. Here, we map out the complete phase diagram of the Kitaev model in tilted magnetic fields and report the emergence of a distinct gapless quantum spin liquid at intermediate field strengths. Analyzing a number of static, dynamical, and finite temperature quantities using numerical exact diagonalization techniques, we find strong evidence that this phase exhibits gapless fermions coupled to a massless U(1) gauge field. We discuss its stability in the presence of perturbations that naturally arise in spin-orbit entangled candidate materials. |
---|