Cargando…

Genetic Analysis of Candida auris Implicates Hsp90 in Morphogenesis and Azole Tolerance and Cdr1 in Azole Resistance

Candida auris is an emerging fungal pathogen and a serious global health threat as the majority of clinical isolates display elevated resistance to currently available antifungal drugs. Despite the increased prevalence of C. auris infections, the mechanisms governing drug resistance remain largely e...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Sang Hu, Iyer, Kali R., Pardeshi, Lakhansing, Muñoz, José F., Robbins, Nicole, Cuomo, Christina A., Wong, Koon Ho, Cowen, Leah E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355988/
https://www.ncbi.nlm.nih.gov/pubmed/30696744
http://dx.doi.org/10.1128/mBio.02529-18
Descripción
Sumario:Candida auris is an emerging fungal pathogen and a serious global health threat as the majority of clinical isolates display elevated resistance to currently available antifungal drugs. Despite the increased prevalence of C. auris infections, the mechanisms governing drug resistance remain largely elusive. In diverse fungi, the evolution of drug resistance is enabled by the essential molecular chaperone Hsp90, which stabilizes key regulators of cellular responses to drug-induced stress. Hsp90 also orchestrates temperature-dependent morphogenesis in Candida albicans, a key virulence trait. However, the role of Hsp90 in the pathobiology of C. auris remains unknown. In order to study regulatory functions of Hsp90 in C. auris, we placed HSP90 under the control of a doxycycline-repressible promoter to enable transcriptional repression. We found that Hsp90 is essential for growth in C. auris and that it enables tolerance of clinical isolates with respect to the azoles, which inhibit biosynthesis of the membrane sterol ergosterol. High-level azole resistance was independent of Hsp90 but dependent on the ABC transporter CDR1, deletion of which resulted in abrogated resistance. Strikingly, we discovered that C. auris undergoes a morphogenetic transition from yeast to filamentous growth in response to HSP90 depletion or cell cycle arrest but not in response to other cues that induce C. albicans filamentation. Finally, we observed that this developmental transition is associated with global transcriptional changes, including the induction of cell wall-related genes. Overall, this report provides a novel insight into mechanisms of drug tolerance and resistance in C. auris and describes a developmental transition in response to perturbation of a core regulator of protein homeostasis.