Cargando…

Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α

Expression of hypoxia-inducible factor (HIF) 1α has been observed in corneal neovascularization (CNV). Vascular endothelial growth factor (VEGF), one of the most well-known angiogenic factors in CNV, is under the regulation of HIF-1. The present study aims to investigate the synergistic effects of V...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Ying-Cong, Xin, Zhi-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356011/
https://www.ncbi.nlm.nih.gov/pubmed/30355648
http://dx.doi.org/10.1042/BSR20180552
Descripción
Sumario:Expression of hypoxia-inducible factor (HIF) 1α has been observed in corneal neovascularization (CNV). Vascular endothelial growth factor (VEGF), one of the most well-known angiogenic factors in CNV, is under the regulation of HIF-1. The present study aims to investigate the synergistic effects of VEGF and HIF-1α gene silencing on alkali burn-induced CNV in rabbits. The models of rabbits in corneal alkali burn were established. SiRNA recombinant adenovirus was used to explore the synergistic effects of VEGF and HIF-1α gene silencing on alkali burn-induced CNV. CNV area and ultrastructure of cornea were observed. The expression of VEGF and HIF-1α was detected. CNV was observed in rabbits following alkali burn. In addition, overexpressed VEGF and HIF-1α was also observed in rabbits following alkali burn. Then, silencing HIF-1α or silencing VEGF decreased area of CNV, inhibited neovascularization and improved pathological changes, while double-target interference for VEGF and HIF-1α decreased area of CNV inhibited neovascularization, and improved pathological changes to a greater extent. Our study provides evidences emphasizing the distinct notion that VEGF and HIF-1α play the contributory role in alkali burn-induced CNV as a result of double-target interference for VEGF and HIF-1α inhibiting CNV in rabbits following corneal alkali burn.