Cargando…
Designing Self‐Assembled Rosettes: Why Ammeline is a Superior Building Block to Melamine
In supramolecular chemistry, the rational design of self‐assembled systems remains a challenge. Herein, hydrogen‐bonded rosettes of melamine and ammeline have been theoretically examined by using dispersion‐corrected density functional theory (DFT‐D). Our bonding analyses, based on quantitative Kohn...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356174/ https://www.ncbi.nlm.nih.gov/pubmed/30740288 http://dx.doi.org/10.1002/open.201800210 |
Sumario: | In supramolecular chemistry, the rational design of self‐assembled systems remains a challenge. Herein, hydrogen‐bonded rosettes of melamine and ammeline have been theoretically examined by using dispersion‐corrected density functional theory (DFT‐D). Our bonding analyses, based on quantitative Kohn–Sham molecular orbital theory and corresponding energy decomposition analyses (EDA), show that ammeline is a much better building block than melamine for the fabrication of cyclic complexes based on hydrogen bonds. This superior capacity is explained by both stronger hydrogen bonding and the occurrence of a strong synergy. |
---|