Cargando…

A Novel Method for Identifying Essential Genes by Fusing Dynamic Protein–Protein Interactive Networks

Essential genes play an indispensable role in supporting the life of an organism. Identification of essential genes helps us to understand the underlying mechanism of cell life. The essential genes of bacteria are potential drug targets of some diseases genes. Recently, several computational methods...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Fengyu, Peng, Wei, Yang, Yunfei, Dai, Wei, Song, Junrong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356314/
https://www.ncbi.nlm.nih.gov/pubmed/30626157
http://dx.doi.org/10.3390/genes10010031
Descripción
Sumario:Essential genes play an indispensable role in supporting the life of an organism. Identification of essential genes helps us to understand the underlying mechanism of cell life. The essential genes of bacteria are potential drug targets of some diseases genes. Recently, several computational methods have been proposed to detect essential genes based on the static protein–protein interactive (PPI) networks. However, these methods have ignored the fact that essential genes play essential roles under certain conditions. In this work, a novel method was proposed for the identification of essential proteins by fusing the dynamic PPI networks of different time points (called by FDP). Firstly, the active PPI networks of each time point were constructed and then they were fused into a final network according to the networks’ similarities. Finally, a novel centrality method was designed to assign each gene in the final network a ranking score, whilst considering its orthologous property and its global and local topological properties in the network. This model was applied on two different yeast data sets. The results showed that the FDP achieved a better performance in essential gene prediction as compared to other existing methods that are based on the static PPI network or that are based on dynamic networks.