Cargando…

Prey Lysate Enhances Growth and Toxin Production in an Isolate of Dinophysis acuminata

The physiological and toxicological characteristics of Dinophysis acuminata have been increasingly studied in an attempt to better understand and predict diarrhetic shellfish poisoning (DSP) events worldwide. Recent work has identified prey quantity, organic nitrogen, and ammonium as likely contribu...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Han, Tong, Mengmeng, An, Xinlong, Smith, Juliette L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356360/
https://www.ncbi.nlm.nih.gov/pubmed/30669577
http://dx.doi.org/10.3390/toxins11010057
_version_ 1783391517885333504
author Gao, Han
Tong, Mengmeng
An, Xinlong
Smith, Juliette L.
author_facet Gao, Han
Tong, Mengmeng
An, Xinlong
Smith, Juliette L.
author_sort Gao, Han
collection PubMed
description The physiological and toxicological characteristics of Dinophysis acuminata have been increasingly studied in an attempt to better understand and predict diarrhetic shellfish poisoning (DSP) events worldwide. Recent work has identified prey quantity, organic nitrogen, and ammonium as likely contributors to increased Dinophysis growth rates and/or toxicity. Further research is now needed to better understand the interplay between these factors, for example, how inorganic and organic compounds interact with prey and a variety of Dinophysis species and/or strains. In this study, the exudate of ciliate prey and cryptophytes were investigated for an ability to support D. acuminata growth and toxin production in the presence and absence of prey, i.e., during mixotrophic and phototrophic growth respectively. A series of culturing experiments demonstrated that the addition of ciliate lysate led to faster dinoflagellate growth rates (0.25 ± 0.002/d) in predator-prey co-incubations than in treatments containing (1) similar levels of prey but without lysate (0.21 ± 0.003/d), (2) ciliate lysate but no live prey (0.12 ± 0.004/d), or (3) monocultures of D. acuminata without ciliate lysate or live prey (0.01 ± 0.007/d). The addition of ciliate lysate to co-incubations also resulted in maximum toxin quotas and extracellular concentrations of okadaic acid (OA, 0.11 ± 0.01 pg/cell; 1.37 ± 0.10 ng/mL) and dinophysistoxin-1 (DTX1, 0.20 ± 0.02 pg/cell; 1.27 ± 0.10 ng/mL), and significantly greater total DSP toxin concentrations (intracellular + extracellular). Pectenotoxin-2 values, intracellular or extracellular, did not show a clear trend across the treatments. The addition of cryptophyte lysate or whole cells, however, did not support dinoflagellate cell division. Together these data demonstrate that while certain growth was observed when only lysate was added, the benefits to Dinophysis were maximized when ciliate lysate was added with the ciliate inoculum (i.e., during mixotrophic growth). Extrapolating to the field, these culturing studies suggest that the presence of ciliate exudate during co-occurring dinoflagellate-ciliate blooms may indirectly and directly exacerbate D. acuminata abundance and toxigenicity. More research is required, however, to understand what direct or indirect mechanisms control the predator-prey dynamic and what component(s) of ciliate lysate are being utilized by the dinoflagellate or other organisms (e.g., ciliate or bacteria) in the culture if predictive capabilities are to be developed and management strategies created.
format Online
Article
Text
id pubmed-6356360
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63563602019-02-05 Prey Lysate Enhances Growth and Toxin Production in an Isolate of Dinophysis acuminata Gao, Han Tong, Mengmeng An, Xinlong Smith, Juliette L. Toxins (Basel) Article The physiological and toxicological characteristics of Dinophysis acuminata have been increasingly studied in an attempt to better understand and predict diarrhetic shellfish poisoning (DSP) events worldwide. Recent work has identified prey quantity, organic nitrogen, and ammonium as likely contributors to increased Dinophysis growth rates and/or toxicity. Further research is now needed to better understand the interplay between these factors, for example, how inorganic and organic compounds interact with prey and a variety of Dinophysis species and/or strains. In this study, the exudate of ciliate prey and cryptophytes were investigated for an ability to support D. acuminata growth and toxin production in the presence and absence of prey, i.e., during mixotrophic and phototrophic growth respectively. A series of culturing experiments demonstrated that the addition of ciliate lysate led to faster dinoflagellate growth rates (0.25 ± 0.002/d) in predator-prey co-incubations than in treatments containing (1) similar levels of prey but without lysate (0.21 ± 0.003/d), (2) ciliate lysate but no live prey (0.12 ± 0.004/d), or (3) monocultures of D. acuminata without ciliate lysate or live prey (0.01 ± 0.007/d). The addition of ciliate lysate to co-incubations also resulted in maximum toxin quotas and extracellular concentrations of okadaic acid (OA, 0.11 ± 0.01 pg/cell; 1.37 ± 0.10 ng/mL) and dinophysistoxin-1 (DTX1, 0.20 ± 0.02 pg/cell; 1.27 ± 0.10 ng/mL), and significantly greater total DSP toxin concentrations (intracellular + extracellular). Pectenotoxin-2 values, intracellular or extracellular, did not show a clear trend across the treatments. The addition of cryptophyte lysate or whole cells, however, did not support dinoflagellate cell division. Together these data demonstrate that while certain growth was observed when only lysate was added, the benefits to Dinophysis were maximized when ciliate lysate was added with the ciliate inoculum (i.e., during mixotrophic growth). Extrapolating to the field, these culturing studies suggest that the presence of ciliate exudate during co-occurring dinoflagellate-ciliate blooms may indirectly and directly exacerbate D. acuminata abundance and toxigenicity. More research is required, however, to understand what direct or indirect mechanisms control the predator-prey dynamic and what component(s) of ciliate lysate are being utilized by the dinoflagellate or other organisms (e.g., ciliate or bacteria) in the culture if predictive capabilities are to be developed and management strategies created. MDPI 2019-01-21 /pmc/articles/PMC6356360/ /pubmed/30669577 http://dx.doi.org/10.3390/toxins11010057 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gao, Han
Tong, Mengmeng
An, Xinlong
Smith, Juliette L.
Prey Lysate Enhances Growth and Toxin Production in an Isolate of Dinophysis acuminata
title Prey Lysate Enhances Growth and Toxin Production in an Isolate of Dinophysis acuminata
title_full Prey Lysate Enhances Growth and Toxin Production in an Isolate of Dinophysis acuminata
title_fullStr Prey Lysate Enhances Growth and Toxin Production in an Isolate of Dinophysis acuminata
title_full_unstemmed Prey Lysate Enhances Growth and Toxin Production in an Isolate of Dinophysis acuminata
title_short Prey Lysate Enhances Growth and Toxin Production in an Isolate of Dinophysis acuminata
title_sort prey lysate enhances growth and toxin production in an isolate of dinophysis acuminata
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356360/
https://www.ncbi.nlm.nih.gov/pubmed/30669577
http://dx.doi.org/10.3390/toxins11010057
work_keys_str_mv AT gaohan preylysateenhancesgrowthandtoxinproductioninanisolateofdinophysisacuminata
AT tongmengmeng preylysateenhancesgrowthandtoxinproductioninanisolateofdinophysisacuminata
AT anxinlong preylysateenhancesgrowthandtoxinproductioninanisolateofdinophysisacuminata
AT smithjuliettel preylysateenhancesgrowthandtoxinproductioninanisolateofdinophysisacuminata