Cargando…
Silver Nanowires Inks for Flexible Circuit on Photographic Paper Substrate
Silver nanowires (AgNWs) have inspired many research interests due to their better properties in optical, electric, and flexible applications. One such exploitable use is as the electrical conductive fillers for print electronics. In this paper, AgNWs with mean a diameter of 80 nm and mean length of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356428/ https://www.ncbi.nlm.nih.gov/pubmed/30597976 http://dx.doi.org/10.3390/mi10010022 |
_version_ | 1783391538253922304 |
---|---|
author | Yang, Xing Du, Dexi Wang, Yuehui Zhao, Yuzhen |
author_facet | Yang, Xing Du, Dexi Wang, Yuehui Zhao, Yuzhen |
author_sort | Yang, Xing |
collection | PubMed |
description | Silver nanowires (AgNWs) have inspired many research interests due to their better properties in optical, electric, and flexible applications. One such exploitable use is as the electrical conductive fillers for print electronics. In this paper, AgNWs with mean a diameter of 80 nm and mean length of 13.49 μm were synthesized using the polyol solvothermal method. A sonication-induced scission process was used to obtain AgNWs with a length range of 7.64–11.21 μm. Further AgNWs inks were prepared with the as-synthesized AgNWs as conductive fillers in anhydrous ethanol. The conductive inks were coated on resin coated photographic paper substrate using the knife coating process and dried at room temperature. The effects of the number of layers of AgNWs coating, the concentration of AgNWs, and the length of AgNWs on the microstructure and electrical properties of samples were investigated by scanning electron microscopy and using the four-point probe method. The results show that the conductivity of the AgNWs coating increases with the increase in the number of layers in the AgNWs coating, concentration and length of the AgNWs. |
format | Online Article Text |
id | pubmed-6356428 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63564282019-02-05 Silver Nanowires Inks for Flexible Circuit on Photographic Paper Substrate Yang, Xing Du, Dexi Wang, Yuehui Zhao, Yuzhen Micromachines (Basel) Article Silver nanowires (AgNWs) have inspired many research interests due to their better properties in optical, electric, and flexible applications. One such exploitable use is as the electrical conductive fillers for print electronics. In this paper, AgNWs with mean a diameter of 80 nm and mean length of 13.49 μm were synthesized using the polyol solvothermal method. A sonication-induced scission process was used to obtain AgNWs with a length range of 7.64–11.21 μm. Further AgNWs inks were prepared with the as-synthesized AgNWs as conductive fillers in anhydrous ethanol. The conductive inks were coated on resin coated photographic paper substrate using the knife coating process and dried at room temperature. The effects of the number of layers of AgNWs coating, the concentration of AgNWs, and the length of AgNWs on the microstructure and electrical properties of samples were investigated by scanning electron microscopy and using the four-point probe method. The results show that the conductivity of the AgNWs coating increases with the increase in the number of layers in the AgNWs coating, concentration and length of the AgNWs. MDPI 2018-12-29 /pmc/articles/PMC6356428/ /pubmed/30597976 http://dx.doi.org/10.3390/mi10010022 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Xing Du, Dexi Wang, Yuehui Zhao, Yuzhen Silver Nanowires Inks for Flexible Circuit on Photographic Paper Substrate |
title | Silver Nanowires Inks for Flexible Circuit on Photographic Paper Substrate |
title_full | Silver Nanowires Inks for Flexible Circuit on Photographic Paper Substrate |
title_fullStr | Silver Nanowires Inks for Flexible Circuit on Photographic Paper Substrate |
title_full_unstemmed | Silver Nanowires Inks for Flexible Circuit on Photographic Paper Substrate |
title_short | Silver Nanowires Inks for Flexible Circuit on Photographic Paper Substrate |
title_sort | silver nanowires inks for flexible circuit on photographic paper substrate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356428/ https://www.ncbi.nlm.nih.gov/pubmed/30597976 http://dx.doi.org/10.3390/mi10010022 |
work_keys_str_mv | AT yangxing silvernanowiresinksforflexiblecircuitonphotographicpapersubstrate AT dudexi silvernanowiresinksforflexiblecircuitonphotographicpapersubstrate AT wangyuehui silvernanowiresinksforflexiblecircuitonphotographicpapersubstrate AT zhaoyuzhen silvernanowiresinksforflexiblecircuitonphotographicpapersubstrate |