Cargando…

Co-Circulation and Excretion Dynamics of Diverse Rubula- and Related Viruses in Egyptian Rousette Bats from South Africa

The Egyptian rousette bat (Rousettus aegyptiacus) has previously been implicated as the natural host of a zoonotic rubulavirus; however, its association with rubulaviruses has been studied to a limited extent. Urine, spleen, and other organs collected from the R. aegyptiacus population within South...

Descripción completa

Detalles Bibliográficos
Autores principales: Mortlock, Marinda, Dietrich, Muriel, Weyer, Jacqueline, Paweska, Janusz T., Markotter, Wanda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356502/
https://www.ncbi.nlm.nih.gov/pubmed/30626055
http://dx.doi.org/10.3390/v11010037
Descripción
Sumario:The Egyptian rousette bat (Rousettus aegyptiacus) has previously been implicated as the natural host of a zoonotic rubulavirus; however, its association with rubulaviruses has been studied to a limited extent. Urine, spleen, and other organs collected from the R. aegyptiacus population within South Africa were tested with a hemi-nested RT-PCR assay targeting a partial polymerase gene region of viruses from the Avula- and Rubulavirus genera. Urine was collected over a 14-month period to study the temporal dynamics of viral excretion. Diverse rubulaviruses, including viruses related to human mumps and parainfluenza virus 2, were detected. Active excretion was identified during two peak periods coinciding with the host reproductive cycle. Analysis of additional organs indicated co-infection of individual bats with a number of different putative rubulaviruses, highlighting the limitations of using a single sample type when determining viral presence and diversity. Our findings suggest that R. aegyptiacus can harbor a range of Rubula- and related viruses, some of which are related to known human pathogens. The observed peaks in viral excretion represents potential periods of a higher risk of virus transmission and zoonotic disease spill-over.