Cargando…

The Microstructure of GNR and the Mechanical Properties of Biobased PLA/GNR Thermoplastic Vulcanizates with Excellent Toughness

A series of different contents of glycidyl methacrylate (GMA)-grafted natural rubber (GNR) copolymers were fabricated via green bulk melt-grafting reactions, and super-tough bio-based poly (lactic acid) (PLA)/GNR thermoplastic vulcanizates (TPVs) were achieved by in-situ dynamic vulcanization. Incre...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Mingfeng, Lang, Wenchao, Yang, Yue, Yu, Jihang, Wu, Ningjing, Wang, Qingguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356512/
https://www.ncbi.nlm.nih.gov/pubmed/30669249
http://dx.doi.org/10.3390/ma12020294
Descripción
Sumario:A series of different contents of glycidyl methacrylate (GMA)-grafted natural rubber (GNR) copolymers were fabricated via green bulk melt-grafting reactions, and super-tough bio-based poly (lactic acid) (PLA)/GNR thermoplastic vulcanizates (TPVs) were achieved by in-situ dynamic vulcanization. Increasing the graft yield, gel fraction, and crosslinking density of GNR vulcanizates effectively improved the ductility of the PLA/GNR TPVs, while prolonging the dynamic vulcanization time and increasing the GMA graft yield led to a notable enhancement in the impact toughness of the PLA/GNR TPVs. PLA/30 wt % GNR TPVs exhibited a significantly increased elongation (410%) and notched impact strength (73.2 kJ/m(2)), which were 40 and 15 times higher than those of the PLA/30 wt % NR TPVs, respectively. The new bio-based PLA/GNR TPVs offer promise as replacements for petroleum-based polymers in the automotive, 3D printing, and packaging fields.